1、 一、选择题 1.正整数n小于100,并且满足等式,其中表示不超过x的最大整数,例如:,则满足等式的正整数的个数为( ) A.2 B.3 C.12 D.16 2.不等式组的解集是,那么m的取值范围( ) A. B. C. D. 3.已知关于,的方程组,其中,下列结论: ①当时,,的值互为相反数;②是方程组的解;③当时,方程组的解也是方程的解;④若,则.其中正确的是( ) A.①② B.②③ C.②③④ D.①③④ 4.已知,则下列结论错误的是( ) A. B. C. D. 5.解不等式时,我们可以将其化为不等式或得到的解集为或,利用该题的方法和结
2、论,则不等式的解集为( ) A. B. C. D.或 6.若关于的不等式的解集是,则关于的不等式的解集是( ) A. B. C. D. 7.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则下列选项中,不符合条件的整数m的值是( ) A.﹣4 B.2 C.4 D.5 8.不等式组无解,则的取值范围为( ) A. B. C. D. 9.关于的不等式组恰好只有两个整数解,则的取值范围为( ) A. B. C. D. 10.对于任意实数m,n,我们把这两个中较小的数记作min{m,n},如min{1,
3、2}=1.若关于x的不等式min{1-2x,-3}>m无解,则m的取值范围是( ). A.m≤-3. B.m≤2. C. m≥-3. D.m≥2. 二、填空题 11.已知实数,,满足,且有最大值,则的值是__________. 12.若不等式组 -的解集中的任何一个x的值均不在2≤x≤5的范围内,则a的取值范围为________. 13.已知不等式-的正整数解恰是1,2,3,4,那么的取值范围是_________________. 14.若不等式组无解,则的取值范围是_________. 15.一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,吸引了众多才华横
4、溢的八中同学参赛.该比赛裁判小组由若干人组成,每名裁判员给选手的最高分不超过10分.今年大赛一名选手演唱后的得分情况是:全体裁判员所给分数的平均分是9.84分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分.那么,所有裁判员所给分数中的最低分最少可以是________分. 16.若关于x的不等式组的整数解共有6个,则a的取值范围是______. 17.在关于x、y的方程组中,未知数满足x≥0,y>0,那么m的取值范围是_________________. 18.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣
5、n+3,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<4※x<7,且解集中有三个整数解,则整数a的取值可以是_________. 19.用表示不小于数的最小整数.例如:,,,.在此规定下:数都能满足,其中.则方程的解是__________. 20.不等式组的所有正整数的和是 _____. 三、解答题 21.如图,数轴上两点A、B对应的数分别是﹣1,1,点P是线段AB上一动点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|=2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数. (1)﹣3,0,2.5是连动数的是
6、 ; (2)关于x的方程2x﹣m=x+1的解满足是连动数,求m的取值范围 ; (3)当不等式组的解集中恰好有4个解是连动整数时,求a的取值范围. 22.(发现问题)已知,求的值. 方法一:先解方程组,得出,的值,再代入,求出的值. 方法二:将①②,求出的值. (提出问题)怎样才能得到方法二呢? (分析问题) 为了得到方法二,可以将①②,可得. 令等式左边,比较系数可得,求得. (解决问题) (1)请你选择一种方法,求的值; (2)对于方程组利用方法二的思路,求的值; (迁移应用) (3)已知,求的范围. 23.中国传统节日“端午节”期间,某商场开展了“
7、欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元. (1)打折前,每盒甲、乙品牌粽子分别为多少元? (2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子? 24.如图所示,在平面直角坐标系中,点A,,的坐标为,,,其中,,满足,. (1)求,,的值; (2)若在轴上,且,求点坐标; (3)如果在第二象限内有一点,在什么取值范围时,的面
8、积不大于的面积?求出在符合条件下,面积最大值时点的坐标. 25.我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”. (1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由; ①; ②. (2)若关于x的组合是“有缘组合”,求a的取值范围; (3)若关于x的组合是“无缘组合”;求a的取值范围. 26.阅读材料: 如果x是一个有理数,我们把不超过x的最大整数记作[x] . 例如,[3.2]=3
9、[5]=5,[-2.1]=-3. 那么,x=[x]+a,其中0≤a<1. 例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9. 请你解决下列问题: (1)[4.8]= ,[-6.5]= ; (2)如果[x]=3,那么x的取值范围是 ; (3)如果[5x-2]=3x+1,那么x的值是 ; (4)如果x=[x]+a,其中0≤a<1,且4a= [x]+1,求x的值. 27.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿运动,
10、最终到达点D,若点Q运动时间为秒. (1)当时, 平方厘米;当时, 平方厘米; (2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求的取值范围; (3)若的面积为平方厘米,直接写出值. 28.某数码专营店销售A,B两种品牌智能手机,这两种手机的进价和售价如表所示: A B 进价(元/部) 3300 3700 售价(元/部) 3800 4300 (1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部? (2)根据市场调研,该店四月份
11、计划购进这两种手机共40部,要求购进B种手机数不低于A种手机数的,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案. 29.若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x的代数式,当-1£x£ 1时,代数式在x=±1时有最大值,最大值为1;在x=0时有最小值,最小值为0,此时最值1,0均在-1£x£1这个范围内,则称代数式是-1£x£1的“湘一代数式”. (1)若关于的代数式,当时,取得的最大值为 ,最小值为 ,所以代数式 (填“是”或“不是”)的“
12、湘一代数式”. (2)若关于的代数式是的“湘一代数式”,求a的最大值与最小值. (3)若关于的代数式是的“湘一代数式”,求m的取值范围. 30.学校组织名同学和名教师参加校外学习交流活动现打算选租大、小两种客车,大客车载客量为人/辆,小客车载客量为人/辆 (1)学校准备租用辆客车,有几种租车方案? (2)在(1)的条件下,若大客车租金为元/辆,小客车租金为元/辆,哪种租车方案最省钱? (3)学校临时增加名学生和名教师参加活动,每辆大客车有2名教师带队,每辆小客车至少有名教师带队.同学先坐满大客车,再依次坐满小客车,最后一辆小客车至少要有人,请你帮助设计租车方案 【参考答案】*
13、试卷处理标记,请不要删除 一、选择题 1.D 解析:D 【分析】 利用不等式[x]≤x即可求出满足条件的n的值. 【详解】 解:若,,有一个不是整数, 则或者或者, ∴, ∴,,都是整数,即n是2,3,6的公倍数,且n<100, ∴n的值为6,12,18,24,......96,共有16个, 故选:D. 【点睛】 本题主要考查不等式以及取整,关键是要正确理解取整的定义,以及[x]≤x<[x]+1式子的应用,这个式子在取整中经常用到. 2.A 解析:A 【分析】 先求出不等式的解集,再根据不等式组的解集得出答案即可. 【详解】 解不等式
14、①,得: ∵不等式组 的解集是 ∴ 故选择:A. 【点睛】 本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m的不等式是解此题的关键. 3.D 解析:D 【分析】 将原方程求解,用a表示x和y,然后根据a的取值范围,求出x和y的取值范围,然后逐一判断每一项即可. 【详解】 由,解得 ∵ ∴, ①当时,解得,故①正确; ②不是方程组的解,故②错误; ③当时,解得,此时,故③正确; ④若,即,解得,故④正确; 故选D. 【点睛】 本题考查了二元一次方程组,解一元一次不等式,熟练掌握二元一次方程组的解法和不等式的解法是本题的关键.
15、4.C 解析:C 【分析】 先将不等式两边都除以3得a>﹣2b,再两边都加上1知a+1>﹣2b+1,结合﹣2b+1>﹣2b﹣1利用不等式的同向传递性可得答案. 【详解】 解:∵3a>﹣6b, ∴ 故A正确; ∵3a>﹣6b, ∴a>﹣2b, ∴a+1>﹣2b+1, 故B正确; ∵3a>﹣6b, ∴a>﹣2b, 得不到 故C不正确; ∵3a>﹣6b, ∴a>﹣2b, ∴ 故D正确; 故选:C. 【点睛】 本题主要考查不等式的性质,解题的关键是掌握不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项 5.D 解析:D
16、
【分析】
根据已知形式化成不等式组分别求解即可;
【详解】
由题可得,将不等式化为或,
解不等式组,
由得,
由得或,
∴不等式的解集为:;
解不等式组,
由得,
由得,
∴不等式组的解集为:,
∴不等式组的解析为或.
故选D.
【点睛】
本题主要考查了一元一次不等式组的求解,准确根据已知条件组合不等式组求解是解题的关键.
6.D
解析:D
【分析】
由题意可知,a、b均为负数,且可得a=2b,把a=2b代入bx 17、∴x>2
故选:D.
【点睛】
本题考查了解一元一次不等式,关键是由条件确定字母a的符号,从而确定a与b的关系,易出现错误的地方是求bx 18、的解,解题关键是熟练运用解方程组和解不等式组方法求解,根据整数解准确进行求值.
8.B
解析:B
【分析】
求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,然后求出参数范围.
【详解】
解:解不等式2x−1≥x+2,得:x≥3,
又∵x≤m且不等式组无解,
∴m<3,
故选:B.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
9.C
解析:C
【分析】
先确定不等式组的解集,再根据整数解得个数,确定 19、字母的取值范围.
【详解】
∵
∴不等式①的解集为x≤5;不等式②的解集为x>a+1;
∴不等式组的解集为a+1<x≤5,
∵不等式组恰好只有两个整数解,
∴整数解为4和5,
∴3≤a+1<4
∴,
故选C.
【点睛】
本题考查了不等式组的整数解问题,熟练掌握不等式组的解法,灵活确定整数解,从而转化新不等式组是解题的关键.
10.C
解析:C
【分析】
根据新定义运算法则分情况讨论1-2x与-3的大小及min{1-2x,-3}的值,通过min{1-2x,-3}>m求解m的范围.
【详解】
解:令
由题意可得:
当即时,,
当即时,,
∵, 即无解,
20、∴,
故选:C.
【点睛】
本题考查了新定义下解一元一次不等式,明白新定义的运算法则是解题的关键.
二、填空题
11.8
【分析】
把变形得,故可求出有最大值时,a,b的值,代入故可求解.
【详解】
设=
∴a-2b=(m+n)a+(m-n)b
∴,解得
∴=
∵,
∴,
∴
∴有最大值1
此时,
解得a=1,b=
解析:8
【分析】
把变形得,故可求出有最大值时,a,b的值,代入故可求解.
【详解】
设=
∴a-2b=(m+n)a+(m-n)b
∴,解得
∴=
∵,
∴,
∴
∴有最大值1
此时,
解得a=1,b=0
∴= 21、8
故答案为:8.
【点睛】
此题主要考查不等式组的应用与求解,解二元一次方程组,解题的关键是根据题意把把变形得,从而求解.
12.a≤1或a≥5
【分析】
解不等式组,求出x的范围,根据任何一个x的值均不在2≤x≤5范围内列出不等式,解不等式得到答案.
【详解】
解:不等式组的解集为:a<x<a+1,
∵任何一个x的值均不在2
解析:a≤1或a≥5
【分析】
解不等式组,求出x的范围,根据任何一个x的值均不在2≤x≤5范围内列出不等式,解不等式得到答案.
【详解】
解:不等式组的解集为:a<x<a+1,
∵任何一个x的值均不在2≤x≤5范围内,
∴x<2或x> 22、5,
∴a+1≤2或a≥5,
解得,a≤1或a≥5,
∴a的取值范围是:a≤1或a≥5,
故答案为:a≤1或a≥5.
【点睛】
本题考查的是不等式的解集的确定,根据不等式的解法正确解出不等式是解题的关键,根据题意列出新的不等式是本题的重点.
13.【分析】
用含a的式子表示出不等式的解集,由不等式的正整数解,得到x的范围,再根据x与a的关系列不等式(组)求解.
【详解】
因为3x-a≤0,所以x≤,
因为原不等式的正整数解恰是1,2,3,4
解析:
【分析】
用含a的式子表示出不等式的解集,由不等式的正整数解,得到x的范围,再根据x与a的关系列不等式(组)求解.
23、详解】
因为3x-a≤0,所以x≤,
因为原不等式的正整数解恰是1,2,3,4,
即,解得12≤x<15.
故答案为12≤x<15.
【点睛】
由不等式(组)的整数解确定所含字母的取值范围的解法是:①解不等式(组),用字母系数表示出解集;②由不等式(组)的整数解确定不等式(组)的解集;③综合①②列出关于字母系数的不等式(注意是否可取等于)求解.
14.【分析】
把不等式组中每个不等式的解集求出来,然后令它们的交集为空集即可得到解答.
【详解】
解:解不等式组得:x2a-2
∴要使不等式组无解,只要2a-2≥a,即a≥2即可
故答案为
解析:
【分析】
24、
把不等式组中每个不等式的解集求出来,然后令它们的交集为空集即可得到解答.
【详解】
解:解不等式组得:x2a-2
∴要使不等式组无解,只要2a-2≥a,即a≥2即可
故答案为a≥2.
【点睛】
本题考查不等式组的解集,准确求解不等式组中每个不等式的解是解题关键.
15.36
【分析】
设裁判员有x名,根据全体裁判员所给分数的平均分是9.84分可得总分为9.84x,如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给
解析:36
【分析】
设裁判员有x名,根据全体裁判员所给分数的平均分是9.84分可得总 25、分为9.84x,如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分,可求出最高分的代数式从而列出不等式,得到最高分就能求出最低分.
【详解】
设裁判员有x名,那么总分为9.84x;
去掉最高分后的总分为9.82(x-1),由此可知最高分为9.84x-9.82(x-1)=0.02x+9.82;
去掉最低分后的总分为9.9(x-1),由此可知最低分为9.84x-9.9(x-1)=9.9-0.06x.
因为最高分不超过10,所以0.02x+9.82≤10,即0.02x≤0.18,所以x≤9.
当x取7时,最低分有最 26、小值,则最低分为9.9-0.06x=9.9-0.54=9.36.
故答案是:9.36.
【点睛】
考查理解题意的能力,关键是表示出最高分的代数式,列出不等式求出最高分,然后求出最低分,根据平均分求出人数.
16.-18≤a<-15
【分析】
首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式组,从而得出a的范围.
【详解】
解不等式,得:
解析:-18≤a<-15
【分析】
首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式组,从而得 27、出a的范围.
【详解】
解不等式,得:,
解不等式,得:,
因为不等式组的整数解有6个,
所以,
解得:,
故答案为.
【点睛】
本题主要考查了一元一次不等式组的整数解.利用不等式组的整数解个数来列出关于a的不等式组是解题的关键.
17.-2≤m<3
【解析】
【分析】先解方程组求出方程组的解,然后根据x≥0,y>0列出关于m的不等式组,解不等式组即可得.
【详解】解方程组,得,
由x≥0,y>0则有,
解得:-2≤m<3,
故答案
解析:-2≤m<3
【解析】
【分析】先解方程组求出方程组的解,然后根据x≥0,y>0列出关于m的不等式组,解不等式组即可得






