ImageVerifierCode 换一换
格式:PPTX , 页数:24 ,大小:737.98KB ,
资源ID:4875322      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4875322.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(95柱锥球及其简单组合体1.pptx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

95柱锥球及其简单组合体1.pptx

1、第九章第九章立体几何立体几何 95柱、锥、球及简单组合体创设情境创设情境兴趣导入兴趣导入9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体观察上图所示的多面体,可以发现它们具如下特征:(1)有两个面互相平行,其余各面都是四边形;(2)每相邻两个四边形的公共边互相平行 动脑思考动脑思考探索新知探索新知9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体有两个面互相平行,其余每相邻两个面的交线都互相平行的多面体叫做棱柱棱柱,互相平行的两个面,叫做棱柱的底面棱柱的底面,其余各面叫做棱柱的侧面侧面相邻两个侧面的公共边叫做棱柱的侧棱棱柱的侧棱两个底面间的距离,叫做棱柱的高棱柱的高 9 95 5

2、柱、锥、球及简单组合体柱、锥、球及简单组合体动脑思考动脑思考探索新知探索新知上图所示的四个多面体都是棱柱 表示棱柱时,通常分别顺次写出两个底面各个顶点的字母,中间用一条短横线隔开,如图(2)所示的棱柱,可以记作棱柱 或简记作棱柱 9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体动脑思考动脑思考探索新知探索新知经常以棱柱底面多边形的边数来命名棱柱,如图957所示的棱柱依次为三棱柱、四棱柱、五棱柱 9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体动脑思考动脑思考探索新知探索新知侧棱与底面斜交的棱柱叫做斜棱柱斜棱柱,如图(2);侧棱与底面垂直的棱柱叫做直棱柱直棱柱,如图956(1);

3、底面是正多边形的直棱柱叫做正棱柱正棱柱,如图(3)和(4),分别为正四棱柱和正五棱柱 动脑思考动脑思考探索新知探索新知9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体正棱柱有下列性质:(1)侧棱垂直于底面,各侧棱长都相等,并且等于正棱柱的高;(2)两个底面中心的连线是正棱柱的高 动脑思考动脑思考探索新知探索新知9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体正棱柱所有侧面的面积之和,叫做正棱柱的侧面积正棱柱的侧面积正棱柱的侧面积与两个底面面积之和,叫做正棱柱的全面积正棱柱的全面积 观察正棱柱的表面展开图,可以得到正棱柱的侧面积、全面积计算公式分别为 其中,表示正棱柱底面的周长,

4、表示正棱柱的高,表示正棱柱底面的面积动脑思考动脑思考探索新知探索新知9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体正棱柱的体积计算公式为 其中,表示正棱锥的底面的面积,是正棱锥的高.9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体巩固知识巩固知识典型例题典型例题例例 1已知一个正三棱柱的底面边长为4 cm,高为5 cm,求这个正三棱柱的侧面积和体积 解解 正三棱锥的侧面积为 S侧ch345 60()由于边长为4 cm的正三角形面积为 所以正三棱柱的体积为 动脑思考动脑思考探索新知探索新知9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体 利用几何画板可以方便地作出棱柱的

5、直观图形方法是:首先选中所以绘制棱柱的名称(左图),然后选择合适的位置,点击并拖动,即可得到棱柱的直观图形(右图),最后再标注字母 创设情境创设情境兴趣导入兴趣导入9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体(3)观察如图所示的多面体,可以发现它们具如下特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共顶点 9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体(3)具备上述特征的多面体叫做棱锥棱锥多边形叫做棱锥的底面(简称底),底面(简称底),有公共顶点的三角形面叫做棱锥的侧面,侧面,各侧面的公共顶点叫做棱锥的顶顶点,点,顶点到底面的距离叫做棱锥的高高底面是三

6、角形、四边形、的棱锥分别叫做三棱锥、四棱锥、通常用表示底面各顶点的字母来表示棱锥例如,图(2)中的棱锥记作:棱锥 动脑思考动脑思考探索新知探索新知9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体(3)底面是正多边形,其余各面是全等的等腰三角形矩形的棱锥叫做正棱锥正棱锥图中(1)、(2)分别表示正三棱锥、正四棱锥 动脑思考动脑思考探索新知探索新知动脑思考动脑思考探索新知探索新知正棱锥有下列性质:(1)各侧棱的长相等;(2)各侧面都是全等的等腰三角形各等腰三角形底边上的高都叫做正正棱锥的斜高棱锥的斜高;(3)顶点到底面中心的连线垂直与底面,是正棱锥的高;(4)正棱锥的高、斜高与斜高在底面的

7、射影组成一个直角三角形;(5)正棱锥的高、侧棱与侧棱在底面的射影也组成一个直角三角形9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体动脑思考动脑思考探索新知探索新知9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体观察正棱锥的表面展开图,可以得到正棱锥的侧面积、全面积(表面积)计算公式分别为 其中,表示正棱锥底面的是正棱锥的斜高,表示正棱锥的底面的面积,是正棱锥的高.周长,创设情境创设情境兴趣导入兴趣导入 准备好同底等高的正三棱锥与正三棱柱形容器,将正三棱锥容器中装满沙子,然后倒入正三棱柱形状的容器中,发现:连续倒三次正好将正三棱柱容器装满9 95 5柱、锥、球及简单组合体柱、锥

8、球及简单组合体动脑思考动脑思考探索新知探索新知实验表明,对于同底等高的棱锥与棱柱,棱锥的体积是棱柱体积的三分之一即 其中,表示正棱锥的底面的面积,是正棱锥的高.9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体巩固知识巩固知识典型例题典型例题9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体例例 2如图,正三棱锥P-ABC中,点O是底面中心,PO12 cm,斜高PD13 cm求它的侧面积、体积,体积精确到1)(面积精确到0.1解解在正三棱锥P-ABC中,高PO12 cm,斜高PD13 cm 在直角三角形PBD中,在底面正三角形ABC中,CD3 OD15(cm)所以底面边长为 所以

9、侧面积与体积分别约为 运用知识运用知识强化练习强化练习9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体1.设正三棱柱的高为6,底面边长为4,求它的侧面积、全面积及体积.2.正四棱锥的高是a,底面的边长是2a,求它的全面积与体积.正棱柱的全面积、体积公式,正棱锥的全面积、体积公式?正棱柱的全面积、体积公式,正棱锥的全面积、体积公式?理论升华理论升华整体建构整体建构9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体学习行为学习行为 学习效果学习效果 学习方法学习方法 自我反思自我反思目标检测目标检测9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体自我反思自我反思目标检测目标检测9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体设正三棱柱的高为6,底面边长为4,求它的侧面积、全面积及体积 作作 业业读书部分:读书部分:阅读教材相关章节阅读教材相关章节 实践调查:实践调查:对生活中的棱柱、对生活中的棱柱、书面作业:书面作业:教材习题教材习题9.5 A9.5 A组(必做)组(必做)教材习题教材习题9.5 B9.5 B组(选做)组(选做)棱锥的实体进行观察棱锥的实体进行观察 继续探索继续探索活动探究活动探究9 95 5柱、锥、球及简单组合体柱、锥、球及简单组合体

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服