1、中考数学平行四边形-经典压轴题附答案解析一、平行四边形1操作:如图,边长为2的正方形ABCD,点P在射线BC上,将ABP沿AP向右翻折,得到AEP,DE所在直线与AP所在直线交于点F探究:(1)如图1,当点P在线段BC上时,若BAP=30,求AFE的度数;若点E恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?并求出此时AFD的度数归纳:(2)若点P是线段BC上任意一点时(不与B,C重合),AFD的度数是否会发生变化?试证明你的结论;猜想:(3)如图2,若点P在BC边的延长线上时,AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论【答案】(1)45;BC的中点,45;(
2、2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析.【解析】试题分析:(1)当点P在线段BC上时,由折叠得到一对角相等,再利用正方形性质求出DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;由E为DF中点,得到P为BC中点,如图1,连接BE交AF于点O,作EGAD,得EGBC,得到AF垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),AFD的度数不会发生变化,作AGDF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,
3、根据等式的性质求出1+2的度数,即为FAG度数,即可求出F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,AFD的度数不会发生变化,理由为:作AGDE于G,得DAG=EAG,设DAG=EAG=,根据FAE为BAE一半求出所求角度数即可试题解析:(1)当点P在线段BC上时,EAP=BAP=30,DAE=90302=30,在ADE中,AD=AE,DAE=30,ADE=AED=(18030)2=75,在AFD中,FAD=30+30=60,ADF=75,AFE=1806075=45;点E为DF的中点时,P也为BC的中点,理由如下:如图1,连接BE交AF于点O,作EGAD,得EGBC,
4、EGAD,DE=EF,EG=AD=1,AB=AE,点A在线段BE的垂直平分线上,同理可得点P在线段BE的垂直平分线上,AF垂直平分线段BE,OB=OE,GEBP,OBP=OEG,OPB=OGE,BOPEOG,BP=EG=1,即P为BC的中点,DAF=90BAF,ADF=45+BAF,AFD=180DAFADF=45;(2)AFD的度数不会发生变化,作AGDF于点G,如图1(a)所示,在ADE中,AD=AE,AGDE,AG平分DAE,即2=DAG,且1=BAP,1+2=90=45,即FAG=45,则AFD=9045=45;(3)如图2所示,AFE的大小不会发生变化,AFE=45,作AGDE于G,
5、得DAG=EAG,设DAG=EAG=,BAE=90+2,FAE=BAE=45+,FAG=FAEEAG=45,在RtAFG中,AFE=9045=45考点:1.正方形的性质;2.折叠性质;3.全等三角形的判定与性质.2操作与证明:如图1,把一个含45角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF取AF中点M,EF的中点N,连接MD、MN(1)连接AE,求证:AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论结论1:DM、MN的数量关系是 ;结论2:DM、M
6、N的位置关系是 ;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出ABEADF,得到AE=AF,从而证明出AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论
7、;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MNAE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到DMN=DGE=90从而得到DM、MN的位置关系是垂直.试题解析:(1)四边形ABCD是正方形,AB=AD=BC=CD,B=ADF=90,CEF是等腰直角三角形,C=90,CE=CF,BCCE=CDCF,即BE=DF,ABEADF,AE=AF,AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;在RtADF中DM是斜边AF的中线,A
8、F=2DM,MN是AEF的中位线,AE=2MN,AE=AF,DM=MN;DMF=DAF+ADM,AM=MD,FMN=FAE,DAF=BAE,ADM=DAF=BAE,DMN=FMN+DMF=DAF+BAE+FAE=BAD=90,DMMN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,点M为AF的中点,点N为EF的中点,MNAE,MN=AE,由已知得,AB=AD=BC=CD,B=ADF,CE=CF,又BC+CE=CD+CF,即BE=DF,ABEADF,AE=AF,在RtADF中,点M为AF的中点,DM=AF,DM=MN,ABEADF,1=2,ABDF,1=3,同理可证:2=4,3=4,D
9、M=AM,MAD=5,DGE=5+4=MAD+3=90,MNAE,DMN=DGE=90,DMMN所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质3如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C,连接AC并延长交直线DE于点P,F是AC的中点,连接DF(1)求FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出ACC的面积最大值【答案】(1)45;(2)BP+DPAP,证明详见解析;(3
10、)1【解析】【分析】(1)证明CDECDE和ADFCDF,可得FDPADC45;(2)作辅助线,构建全等三角形,证明BAPDAP(SAS),得BPDP,从而得PAP是等腰直角三角形,可得结论;(3)先作高线CG,确定ACC的面积中底边AC为定值2,根据高的大小确定面积的大小,当C在BD上时,CG最大,其ACC的面积最大,并求此时的面积【详解】(1)由对称得:CDCD,CDECDE,在正方形ABCD中,ADCD,ADC90,ADCD,F是AC的中点,DFAC,ADFCDF,FDPFDC+EDCADC45;(2)结论:BP+DPAP,理由是:如图,作APAP交PD的延长线于P,PAP90,在正方形
11、ABCD中,DABA,BAD90,DAPBAP,由(1)可知:FDP45DFP90APD45,P45,APAP,在BAP和DAP中,BAPDAP(SAS),BPDP,DP+BPPPAP;(3)如图,过C作CGAC于G,则SACCACCG,RtABC中,ABBC,AC,即AC为定值,当CG最大值,ACC的面积最大,连接BD,交AC于O,当C在BD上时,CG最大,此时G与O重合,CDCD,ODAC1,CG1,SACC【点睛】本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题4在平面直角坐标系中,四边形
12、AOBC是矩形,点O(0,0),点A(5,0),点B(0,3)以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F(1)如图,当点D落在BC边上时,求点D的坐标;(2)如图,当点D落在线段BE上时,AD与BC交于点H求证ADBAOB;求点H的坐标(3)记K为矩形AOBC对角线的交点,S为KDE的面积,求S的取值范围(直接写出结果即可)【答案】(1)D(1,3);(2)详见解析;H(,3);(3)S【解析】【分析】(1)如图,在RtACD中求出CD即可解决问题;(2)根据HL证明即可;,设AH=BH=m,则HC=BC-BH=5-m,在RtAHC中,根据AH
13、2=HC2+AC2,构建方程求出m即可解决问题;(3)如图中,当点D在线段BK上时,DEK的面积最小,当点D在BA的延长线上时,DEK的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图中,A(5,0),B(0,3),OA=5,OB=3,四边形AOBC是矩形,AC=OB=3,OA=BC=5,OBC=C=90,矩形ADEF是由矩形AOBC旋转得到,AD=AO=5,在RtADC中,CD=4,BD=BC-CD=1,D(1,3)(2)如图中,由四边形ADEF是矩形,得到ADE=90,点D在线段BE上,ADB=90,由(1)可知,AD=AO,又AB=AB,AOB=90,RtADBRtA
14、OB(HL)如图中,由ADBAOB,得到BAD=BAO,又在矩形AOBC中,OABC,CBA=OAB,BAD=CBA,BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在RtAHC中,AH2=HC2+AC2,m2=32+(5-m)2,m=,BH=,H(,3)(3)如图中,当点D在线段BK上时,DEK的面积最小,最小值=DEDK=3(5-)=,当点D在BA的延长线上时,DEK的面积最大,最大面积=DEKD=3(5+)=综上所述,S【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程
15、解决问题5如图,四边形ABCD中,BCD=D=90,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当B=70时,求AEC的度数;(3)当ACE为直角三角形时,求边BC的长.【答案】(1);(2)AEC=105;(3)边BC的长为2或.【解析】试题分析:(1)过A作AHBC于H,得到四边形ADCH为矩形在BAH中,由勾股定理即可得出结论(2)取CD中点T,连接TE,则TE是梯形中位线,得ETAD,ETCD,AET=B=70又AD=AE=1,得到AED=ADE=DET=35由ET垂直平分CD,得CET=DET=35,即可得到结论
16、(3)分两种情况讨论:当AEC=90时,易知CBECAECAD,得BCE=30,解ABH即可得到结论当CAE=90时,易知CDABCA,由相似三角形对应边成比例即可得到结论试题解析:解:(1)过A作AHBC于H由D=BCD=90,得四边形ADCH为矩形在BAH中,AB=2,BHA=90,AH=y,HB=, 则(2)取CD中点T,联结TE,则TE是梯形中位线,得ETAD,ETCD,AET=B=70又AD=AE=1,AED=ADE=DET=35由ET垂直平分CD,得CET=DET=35,AEC=7035=105 (3)分两种情况讨论:当AEC=90时,易知CBECAECAD,得BCE=30,则在A
17、BH中,B=60,AHB=90,AB=2,得BH=1,于是BC=2当CAE=90时,易知CDABCA,又,则(舍负)易知ACE90,所以边BC的长为综上所述:边BC的长为2或点睛:本题是四边形综合题考查了梯形中位线,相似三角形的判定与性质解题的关键是掌握梯形中常见的辅助线作法6如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE,作BFAE,垂足为G交AD于F(1)求证:AFDE;(2)连接DG,若DG平分EGF,如图(2),求证:点E是CD中点;(3)在(2)的条件下,连接CG,如图(3),求证:CGCD【答案】(1)见解析;(2)见解析;(3)CGCD,见解析【解析】【分析】(1)
18、证明BAFADE(ASA)即可解决问题(2)过点D作DMGF,DNGE,垂足分别为点M,N想办法证明AFDF,即可解决问题(3)延长AE,BC交于点P,由(2)知DECD,利用直角三角形斜边中线的性质,只要证明BCCP即可【详解】(1)证明:如图1中,在正方形ABCD中,ABAD,BADD90o,2+390又BFAE,AGB901+290,13在BAF与ADE中,1=3 BA=AD BAF=D,BAFADE(ASA)AFDE(2)证明:过点D作DMGF,DNGE,垂足分别为点M,N由(1)得13,BGAAND90,ABADBAGADN(AAS)AGDN, 又DG平分EGF,DMGF,DNGE,
19、DMDN,DMAG,又AFGDFM,AGFDMFAFGDFM(AAS),AFDFDEADCD,即点E是CD的中点(3)延长AE,BC交于点P,由(2)知DECD,ADEECP90,DEACEP,ADEPCE(ASA)AEPE,又CEAB,BCPC,在RtBGP中,BCPC,CGBPBC,CGCD【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,角平分线的性质定理,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题7如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC(1)试猜想AE与GC有怎样的关系(直接写出结
20、论即可);(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由(3)在(2)中,若E是BC的中点,且BC2,则C,F两点间的距离为 【答案】(1) AECG,AEGC;(2)成立,证明见解析; (3) 【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明由于四边形ABCD、DEFG都是正方形,易证得ADECDG,则12,由于2、3互余,所以1、3互余,由此可得AEGC(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证ADECDG,得54,由于4、7互余,而5
21、、6互余,那么67;由图知AEBCEH906,即7+CEH90,由此得证(3)如图3中,作CMDG于G,GNCD于N,CHFG于H,则四边形CMGH是矩形,可得CMGH,CHGM想办法求出CH,HF,再利用勾股定理即可解决问题【详解】(1)AECG,AEGC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,ADDC,ADECDG90,DEDG,ADECDG(SAS),AE,CG,122+390,1+390,AHG180(1+3)1809090,AEGC(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,ADDC,DEDG,ADCDCBBBADED
22、G90,12903;ADECDG(SAS),AECG,54;又5+690,4+7180DCE1809090,67,又6+AEB90,AEBCEH,CEH+790,EHC90,AEGC(3)如图3中,作CMDG于G,GNCD于N,CHFG于H,则四边形CMGH是矩形,可得CMGH,CHGMBECE1,ABCD2,AEDECGDGFG,DEDG,DCEGND,EDCDGN,DCEGND(AAS),GCD2,SDCGCDNGDGCM,22CM,CMGH,MGCH,FHFGFG,CF故答案为【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻
23、找全等三角形解决问题,属于中考压轴题8如图所示,矩形ABCD中,点E在CB的延长线上,使CEAC,连接AE,点F是AE的中点,连接BF、DF,求证:BFDF【答案】见解析.【解析】【分析】延长BF,交DA的延长线于点M,连接BD,进而求证AFMEFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BFDF【详解】延长BF,交DA的延长线于点M,连接BD四边形ABCD是矩形,MDBC,AMF=EBF,E=MAF,又FA=FE,AFMEFB,AM=BE,FB=FM矩形ABCD中,AC=BD,AD=BC,BC+BE=AD+AM,即C
24、E=MDCE=AC,AC=CE= BD =DMFB=FM,BFDF【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键9现有一张矩形纸片ABCD(如图),其中AB4cm,BC6cm,点E是BC的中点将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B,过E作EF垂直BC,交BC于F(1)求AE、EF的位置关系;(2)求线段BC的长,并求BEC的面积【答案】(1)见解析;(2)SBEC【解析】【分析】(1)由折线法及点E是BC的中点,可证得BEC是等腰三角形,再有条件证明AEF=90即可得到AEEF;(2)连接BB,通过
25、折叠,可知EBB=EBB,由E是BC的中点,可得EB=EC,ECB=EBC,从而可证BBC为直角三角形,在RtAOB和RtBOE中,可将OB,BB的长求出,在RtBBC中,根据勾股定理可将BC的值求出.【详解】(1)由折线法及点E是BC的中点,EBEBEC,AEBAEB,BEC是等腰三角形,又EFBCEF为BEC的角平分线,即BEFFEC,AEF180(AEB+CEF)90,即AEF90,即AEEF;(2)连接BB交AE于点O,由折线法及点E是BC的中点,EBEBEC,EBBEBB,ECBEBC;又BBC三内角之和为180,BBC90;点B是点B关于直线AE的对称点,AE垂直平分BB;在RtA
26、OB和RtBOE中,BO2AB2AO2BE2(AEAO)2将AB4cm,BE3cm,AE5cm,AO cm,BOcm,BB2BOcm,在RtBBC中,BCcm,由题意可知四边形OEFB是矩形,EFOB,SBEC【点睛】考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化10如图,在正方形ABCD中,对角线AC与BD交于点O,在RtPFE中,EPF=90,点E、F分别在边AD、AB上(1)如图1,若点P与点O重合:求证:AF=DE;若正方形的边长为2,当DOE=15时,求线段
27、EF的长;(2)如图2,若RtPFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,证明:PE=2PF【答案】(1)证明见解析,;(2)证明见解析.【解析】【分析】(1)根据正方形的性质和旋转的性质即可证得:AOFDOE根据全等三角形的性质证明;作OGAB于G,根据余弦的概念求出OF的长,根据勾股定理求值即可;(2)首先过点P作HPBD交AB于点H,根据相似三角形的判定和性质求出PE与PF的数量关系【详解】(1)证明:四边形ABCD是正方形,OA=OD,OAF=ODE=45,AOD=90,AOE+DOE=90,EPF=90,AOF+AOE=90,DOE=AOF,在AOF和DOE
28、中,AOFDOE,AF=DE;解:过点O作OGAB于G,正方形的边长为2,OG=BC=,DOE=15,AOFDOE,AOF=15,FOG=45-15=30,OF=2,EF=;(2)证明:如图2,过点P作HPBD交AB于点H,则HPB为等腰直角三角形,HPD=90,HP=BP,BD=3BP,PD=2BP,PD=2HP,又HPF+HPE=90,DPE+HPE=90,HPF=DPE,又BHP=EDP=45,PHFPDE,PE=2PF【点睛】此题属于四边形的综合题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理注意准确作出辅助线是解此题的关键11如图,点O是正方形ABCD
29、两条对角线的交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEFG(1)如图1,若正方形OEFG的对角线交点为M,求证:四边形CDME是平行四边形(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OEFG,如图2,连接AG,DE,求证:AG=DE,AGDE;(3)在(2)的条件下,正方形OEFG的边OG与正方形ABCD的边相交于点N,如图3,设旋转角为(0180),若AON是等腰三角形,请直接写出的值【答案】(1)证明见解析;(2)证明见解析;(3)的值是22.5或45或112.5或135或157.5【解析】【分析】(1)
30、由四边形OEFG是正方形,得到ME=GE,根据三角形的中位线的性质得到CDGE,CD=GE,求得CD=GE,即可得到结论;(2)如图2,延长ED交AG于H,由四边形ABCD是正方形,得到AO=OD,AOD=COD=90,由四边形OEFG是正方形,得到OG=OE,EOG=90,由旋转的性质得到GOD=EOC,求得AOG=COE,根据全等三角形的性质得到AG=DE,AGO=DEO,即可得到结论;(3)分类讨论,根据三角形的外角的性质和等腰三角形的性质即可得到结论【详解】(1)证明:四边形OEFG是正方形,ME=GE,OG=2OD、OE=2OC,CDGE,CD=GE,CD=GE,四边形CDME是平行
31、四边形;(2)证明:如图2,延长ED交AG于H,四边形ABCD是正方形,AO=OD,AOD=COD=90,四边形OEFG是正方形,OG=OE,EOG=90,将正方形OEFG绕点O逆时针旋转,得到正方形OEFG,GOD=EOC,AOG=COE,在AGO与ODE中,AGOODEAG=DE,AGO=DEO,1=2,GHD=GOE=90,AGDE;(3)正方形OEFG的边OG与正方形ABCD的边AD相交于点N,如图3,、当AN=AO时,OAN=45,ANO=AON=67.5,ADO=45,=ANO-ADO=22.5;、当AN=ON时,NAO=AON=45,ANO=90,=90-45=45;正方形OEF
32、G的边OG与正方形ABCD的边AB相交于点N,如图4,、当AN=AO时,OAN=45,ANO=AON=67.5,ADO=45,=ANO+90=112.5;、当AN=ON时,NAO=AON=45,ANO=90,=90+45=135,、当AN=AO时,旋转角a=ANO+90=67.5+90=157.5,综上所述:若AON是等腰三角形时,的值是22.5或45或112.5或135或157.5【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当AON是等腰三角形时,求的度数是本题的难点12在中,BD为AC边上的中线,过点C作于点E
33、,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF求证:;求证:四边形BDFG为菱形;若,求四边形BDFG的周长【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可【详解】证明:,又为AC的中点,又,证明:,四边形BDFG为平行四边形,又,四边形BDFG为菱形,解:设,则,在中,解得:,舍去,菱形BDFG的周长为8【点睛】本题考
34、查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键13如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EFCE交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H(1)如图2,当点F与点B重合时,CE=,CG=;如图3,当点E是BD中点时,CE=,CG=; (2)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想EBG的形状?并加以证明; (3)在图1,的值是否会发生改变?若不变,求出它的值;若改变,说明理由; (4)在图1,设DE的长为x,矩形CEFG的面积为S,试
35、求S关于x的函数关系式,并直接写出x的取值范围【答案】(1), ,5, ;(2)EBG是直角三角形,理由详见解析;(3) ;(4)S=x2x+48(0x)【解析】【分析】(1)利用面积法求出CE,再利用勾股定理求出EF即可;利用直角三角形斜边中线定理求出CE,再利用相似三角形的性质求出EF即可;(2)根据直角三角形的判定方法:如果一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形即可判断;(3)只要证明DCEBCG,即可解决问题;(4)利用相似多边形的性质构建函数关系式即可;【详解】(1)如图2中,在RtBAD中,BD=10,SBCD=CDBC=BDCE,CE=CG=BE=如图3
36、中,过点E作MNAM交AB于N,交CD于MDE=BE,CE=BD=5,CMEENF,CG=EF=,(2)结论:EBG是直角三角形理由:如图1中,连接BH在RtBCF中,FH=CH,BH=FH=CH,四边形EFGC是矩形,EH=HG=HF=HC,BH=EH=HG,EBG是直角三角形(3)F如图1中,HE=HC=HG=HB=HF,C、E、F、B、G五点共圆,EF=CG,CBG=EBF,CDAB,EBF=CDE,CBG=CDE,DCB=ECG=90,DCE=BCG,DCEBCG,(4)由(3)可知:,矩形CEFG矩形ABCD,CE2=(-x)2+)2,S矩形ABCD=48,S矩形CEFG= (-x)
37、2+()2.矩形CEFG的面积S=x2-x+48(0x)【点睛】本题考查相似三角形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、直角三角形的判定和性质、相似多边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形或直角三角形解决问题,属于中考压轴题14如图,在平面直角坐标系xOy中,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点D、E、F、G分别为边OA、AB、BC、CO的中点,连结DE、EF、FG、GD(1)若点C在y轴的正半轴上,当点B的坐标为(2,4)时,判断四边形DEFG的形状,并说明理由.(2)若点C在第二象限运动,且
38、四边形DEFG为菱形时,求点四边形OABC对角线OB长度的取值范围.(3)若在点C的运动过程中,四边形DEFG始终为正方形,当点C从X轴负半轴经过Y轴正半轴,运动至X轴正半轴时,直接写出点B的运动路径长.【答案】(1)正方形(2)(3)2【解析】分析:(1)连接OB,AC,说明OBAC,OB=AC,可得四边形DEFG是正方形.(2)由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, 故可得结论;(3)根据题意计算弧长即可.详解:(1)正方形,如图1,证明连接OB,AC,说明OBAC,OB=AC,可得四边形DEFG是正方形.(2)如图2,由四边形DEF
39、G是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, ;(3)2.如图3,当四边形DEFG是正方形时,OBAC,且OB=AC,构造OBEACO,可得B点在以E(0,4)为圆心,2为半径的圆上运动.所以当C点从x轴负半轴到正半轴运动时,B点的运动路径为2 .图1 图2 图3点睛:本题主要考查了正方形的判定,菱形的性质以及弧长的计算.灵活运用正方形的判定定理和菱形的性质运用是解题的关键.15已知,以为边在外作等腰,其中.(1)如图,若,求的度数.(2)如图,.若,的长为_.若改变的大小,但,的面积是否变化?若不变,求出其值;若变化,说明变化的规律.【答案】(1)120;
40、(2)2;2【解析】试题分析:(1)根据SAS,可首先证明AECABD,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出BFC的度数;(2)如图2,在ABC外作等边BAE,连接CE,利用旋转法证明EACBAD,可证EBC=90,EC=BD=6,因为BC=4,在RtBCE中,由勾股定理求BE即可;过点B作BEAH,并在BE上取BE=2AH,连接EA,EC并取BE的中点K,连接AK,仿照(2)利用旋转法证明EACBAD,求得EC=DB,利用勾股定理即可得出结论试题解析:解:(1)AE=AB,AD=AC,EAB=DAC=60,EAC=EAB+BAC,DAB=DAC+BAC,EAC=DAB,在AEC和ABD中AECABD(SAS),AEC=ABD,BFC=BEF+EBF=AEB+ABE,BFC=AEB+ABE=120,故答案为120;(2)如图2,以AB为边在ABC外作正三角形ABE,连接CE由(1)可知EACBAD
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100