1、2022年人教版七7年级下册数学期末考试试卷一、选择题1“49的平方根是”的表达式正确的是()ABCD2下列运动中,属于平移的是( )A冷水加热过程中,小气泡上升成为大气泡B急刹车时汽车在地面上的滑动C随手抛出的彩球运动D随风飘动的风筝在空中的运动3在平面直角坐标系中,在第三象限的点是()A(-3,5)B(1,-2)C(-2,-3)D(1,1)4下列命题中,是假命题的是( )A两条直线被第三条直线所截,同位角相等B同旁内角互补,两直线平行C在同一平面内,过一点有且只有一条直线与已知直线垂直D如果两条直线都与第三条直线平行,那么这两条直线也互相平行5已知,如图,点D是射线上一动点,连接,过点D作
2、交直线于点E,若,则的度数为( )ABC或D或6下列命题正确的是()A若ab,bc,则acB若ab,bc,则acC49的平方根是7D负数没有立方根7如图1,则;如图2,则;如图3,则;如图4,直线,点O在直线EF上,则以上结论正确的个数是( )A1个B2个C3个D4个8如图,动点P从点出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45,第1次碰到长方形边上的点的坐标为第2021次碰到长方形边上的坐标为( )ABCD九、填空题9计算:的结果为_十、填空题10已知点P(3,1)关于x轴的对称点Q的坐标是(ab,1b),则a_,b_十一、填空题11如图,AB
3、C中BAC60,将ACD沿AD折叠,使得点C落在AB上的点C处,连接CD与CC,ACB的角平分线交AD于点E;如果BCDC;那么下列结论:12;AD垂直平分CC;B3BCC;DCEC;其中正确的是:_;(只填写序号)十二、填空题12如图,直线,则_十三、填空题13如图,在长方形纸片ABCD中,点E、F分别在AD、BC上,将长方形纸片沿直线EF折叠后,点D、C分别落在点D1、C1的位置,如果=40,那么EFB的度数是_度十四、填空题14如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是_十五、填空题15若点P(2-m,m+1)在x轴上
4、,则P点坐标为_十六、填空题16如图,在平面直角坐标系中,点由原点出发,第一次跳动至点,第二次向左跳动3个单位至点,第三次跳动至点,第四次向左跳动5个单位至点,第五次跳动至点,依此规律跳动下去,点的第2020次跳动至点的坐标是_十七、解答题17(1)(2)(3)十八、解答题18求下列各式中的x值:(1)(2)十九、解答题19完成下面的证明如图,ABCD,B+D180,求证:BEDF分析:要证BEDF,只需证1D证明:ABCD(已知)B+1180( )B+D180(已知)1D( )BEDF( )二十、解答题20在平面直角坐标系中,ABC三个顶点的坐标分别是A(2,2)、B(2,0),C(4,2)
5、(1)在平面直角坐标系中画出ABC;(2)若将(1)中的ABC平移,使点B的对应点B坐标为(6,2),画出平移后的ABC;(3)求ABC的面积二十一、解答题21阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分请解答:(1)若的整数部分为,小数部分为,求的值(2)已知:,其中是整数,且,求的值二十二、解答题22教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个
6、面积为2的大正方形由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1)(1)阅读理解:图1中大正方形的边长为_,图2中点A表示的数为_; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图利用中的成果,在图4的数轴上分别标出表示数0.5以及 的点,并比较它们的大小二十三、解答题23已知,ABDE,点C在AB上方,连接BC、CD(1)如图1,求证:BCDCDEABC;(2)如图2,过点C作CFBC交ED的延长线于点F,探究ABC和F之间的数量关系;(3)如图3,在(2)的
7、条件下,CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分ABC,求BGDCGF的值二十四、解答题24(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)(3)如图3,直线上有两点A、C,分别引两条射线、,射线、分别绕A点
8、,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t二十五、解答题25如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”如图2,CAB和BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N试解答下列问题:(1)仔细观察,在图2中有 个以线段AC为边的“8字形”;(2)在图2中,若B=96,C=100,求P的度数;(3)在图2中,若设C=,B=,CAP=CAB,CDP=CDB,试问P与C、B之间存在着怎样的数量关系(用、表示P),并说明理由;(4)如
9、图3,则A+B+C+D+E+F的度数为 【参考答案】一、选择题1A解析:A【分析】根据平方根的表示方法,即可得到答案【详解】解:“49的平方根是”表示为:故选A【点睛】本题主要考查平方根的表示法,掌握正数a的平方根表示为,是解题的关键2B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,解析:B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的
10、树叶在空中的运动,既发生了平移,也发生了旋转故选B【点睛】此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等3C【分析】根据第三象限点的特征,依次判断即可【详解】解:A:,因此在第二象限,故错误;B:,因此在第四象限,故错误;C:,因此在第三象限,故正确;D:,因此在第一象限,故错误;故答案为:C【点睛】本题主要考查了平面直角坐标系象限的特征,熟悉掌握各象限的横纵坐标的取值范围是解题的关键4A【分析】根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解【详解】解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;
11、B. 同旁内角互补,两直线平行,真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;故选A【点睛】本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键5D【分析】分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DEBC可得出ADE的度数,结合ADC=ADE+CDE可求出ADC的度数;当点D在线段AB的延长线上时,由DEBC可得出ADE的度数,结合ADC=ADE-CDE可求出ADC的度数综
12、上,此题得解【详解】解:当点D在线段AB上时,如图1所示DEBC,ADE=ABC=84,ADC=ADE+CDE=84+20=104;当点D在线段AB的延长线上时,如图2所示DEBC,ADE=ABC=84,ADC=ADE-CDE=84-20=64综上所述:ADC=104或64故选:D【点睛】本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出ADC的度数是解题的关键6B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答【详解】选项A,由ab,bc,则ac,可得选项A错误;选项B, 若ab,bc,则ac,正确;选项C,由49的平方根是
13、7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答7B【分析】如图1所示,过点E作EF/AB,由平行线的性质即可得到A+AEF=180,C+CEF=180,则A+C+AEC=360,故错误;如图2所示,过点P作PE/AB,由平行线的性质即可得到A=APE=180,C=CPE,再由APC=APE=CPE,即可得到APC=A-C,即可判断;如图3所示,过点E作EF/AB,由平行线的性质即可得到A+AEF=180,1=CEF,再由AEF+CEF=AEC,即可判断 ;由平行线的性质即可得到,再由,即可
14、判断【详解】解:如图所示,过点E作EF/AB,AB/CD,AB/CD/EF,A+AEF=180,C+CEF=180,A+AEF+C+CEF=360,又AEF+CEF=AEC,A+C+AEC=360,故错误;如图所示,过点P作PE/AB,AB/CD,AB/CD/PE,A=APE=180,C=CPE,又APC=APE=CPE,APC=A-C,故正确;如图所示,过点E作EF/AB,AB/CD,AB/CD/EF,A+AEF=180,1=CEF,又AEF+CEF=AEC,180-A+1=AEC,故错误;,故正确;故选B【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8A【分析】
15、该题属于找规律题型,只要把运动周期找出来即可解决【详解】由反弹线前后对称规律,得出第16次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3解析:A【分析】该题属于找规律题型,只要把运动周期找出来即可解决【详解】由反弹线前后对称规律,得出第16次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环,202163665,第2021次碰到长方形的边的点的坐标为(7,4),故选:A【点睛】本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答九
16、、填空题96【分析】根据算术平方根的定义即可求解【详解】解:的结果为6故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数解析:6【分析】根据算术平方根的定义即可求解【详解】解:的结果为6故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数十、填空题100 【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),a+b=3,1-b=1,解析:0 【分析】根据题意结合关于x轴对称
17、点的性质得出关于a,b的等式,进而求出答案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),a+b=3,1-b=1,解得:a=3,b=0,故答案为:3,0【点睛】此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键十一、填空题11【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC解析:【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A
18、=AC,DC=D,AD垂直平分CC;,都正确;BD, DC=D,BD= DC,3=B,4=5,3=4+5=25即B2BC;错误;根据折叠的性质,得ACD=AD=B+3=23,ACB的角平分线交AD于点E,2(6+5)=2B, D EC正确;故答案为:.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.十二、填空题12120【分析】延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解【详解】解:如图,延长AB交直线b于点E, , ,故答案为: 【点睛】解析:120【分析】延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解
19、【详解】解:如图,延长AB交直线b于点E, , ,故答案为: 【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键十三、填空题1370【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140解析:70【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140,DEF70,四边形ABCD是长方形,ADBC,EFBDEF70故答案为:70【点睛】考查了长方形的性质,折叠的性质,关
20、键是利用折叠的性质得出DEFD1EF解答十四、填空题14【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决【详解】,n和q互为相反数,O在线段NQ的中点处,绝对值最大的是点P表示的数故解析:【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决【详解】,n和q互为相反数,O在线段NQ的中点处,绝对值最大的是点P表示的数故答案为:【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答十五、填空题15(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标【
21、详解】点P(2-m,m+1)在x轴上,m+1=0,解得:m=-1,2-m=3,P点坐标解析:(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标【详解】点P(2-m,m+1)在x轴上,m+1=0,解得:m=-1,2-m=3,P点坐标为(3,0),故答案为:(3,0)【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键十六、填空题16【分析】根据点的坐标、坐标的平移寻找规律即可求解【详解】解:因为P1(1,1),P2(-2,1), P3(2,2),P4(-3,2), P5(3,3),P6(-4,3), P7(4,解析:【分析】根据点的坐标、坐标的平
22、移寻找规律即可求解【详解】解:因为P1(1,1),P2(-2,1), P3(2,2),P4(-3,2), P5(3,3),P6(-4,3), P7(4,4),P8(-5,4), P2n-1(n,n),P2n(-n-1,n)(n为正整数), 所以2n=2020, n=1010, 所以P 2020(-1011,1010), 故答案为(-1011,1010)【点睛】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律十七、解答题17(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可【详解】解:(1)原式(2)原式(3)原式【点睛
23、】此题主要考查了实解析:(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要考查了实数运算,关键是掌握数的开方,正确化简各数十八、解答题18(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值【详解】解:(1),解得:x=-15;(2),解析:(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值【详解】解:(1),解得:x=-15;(2),解得:x=8或x=
24、-4【点睛】本题考查了立方根和平方根正数的立方根是正数,0的立方根是0,负数的立方根是负数即任意数都有立方根十九、解答题19两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BEDF,只需证1D,由ABCD可知B+1180,又有B+D180,由此即可证得【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BEDF,只需证1D,由ABCD可知B+1180,又有B+D180,由此即可证得【详解】证明:ABCD(已知)B+1180(两直线平行,同旁内角互补)B+D180(已知)1D(同角的补角相等),BEDF(同位角相等,两直线平行)故
25、答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到ABC;(2)利用点B和B的坐标关系可判断ABC先向右平移4个单位,再向上平移2个单位得到A解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到ABC;(2)利用点B和B的坐标关系可判断ABC先向右平移4个单位,再向上平移2个单位得到ABC,利用此平移规律写出A、C的坐标,然后描点即可得到AB
26、C;(3)用一个矩形的面积分别减去三个三角形的面积去计算ABC的面积【详解】解:(1)如图,ABC为所作;(2)如图,ABC为所作;(3)ABC的面积=【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形二十一、解答题21(1)6;(2)12【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解析:(1)6;(2)12【分析】(1)先求出的取值
27、范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解:(1) 34, a=3,b=-3 =+-3-=6(2) 12又10+=x+y,其中x是整数,且0y1,x=11, y=1xy=11(1)=12【点睛】此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键二十二、解答题22(1);(2)见解析;见解析, 【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2) 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;解析:(1);(2
28、)见解析;见解析, 【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2) 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;由题(1)的原理得出大正方形的边长为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小【详解】解:设正方形边长为a,a2=2,a=,故答案为:,;(2)解:裁剪后拼得的大正方形如图所示: 设拼成的大正方形的边长为b,b2=5,b=,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方,比较
29、大小:【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键二十三、解答题23(1)证明见解析;(2);(3)【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2);(3)【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质得出,从而可得,再根据垂直的定义可得,由此即可得出结论;(3)过点作
30、,延长至点,先根据平行线的性质可得,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案【详解】证明:(1)如图,过点作,即,;(2)如图,过点作,即,;(3)如图,过点作,延长至点,平分,平分,由(2)可知,又,【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键二十四、解答题24(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2
31、)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得1=2,然后根据平角等于180求出1的度数,再加上40即可得解;(3)分AB与CD在EF的两侧,分别表示出ACD与BAC,然后根据两直线平行,内错角相等列式计算即可得解;CD旋转到与AB都在EF的右侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解;CD旋转到与AB都在EF的左侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解【详解】解:(1)平行理由如下:如图1
32、,3=4,5=6,1=2,1+5=2+6,ab(内错角相等,两直线平行);(2)如图2:入射光线与镜面的夹角与反射光线与镜面的夹角相等,1=2,入射光线a与水平线OC的夹角为40,b垂直照射到井底,1+2=180-40-90=50,150=25,MN与水平线的夹角为:25+40=65,即MN与水平线的夹角为65,可使反射光线b正好垂直照射到井底;(3)存在如图,AB与CD在EF的两侧时,BAF=105,DCF=65,ACD=180-65-3t=115-3t,BAC=105-t,要使ABCD,则ACD=BAC,即115-3t=105-t,解得t=5;如图,CD旋转到与AB都在EF的右侧时,BAF
33、=105,DCF=65,DCF=360-3t-65=295-3t,BAC=105-t,要使ABCD,则DCF=BAC,即295-3t=105-t,解得t=95;如图,CD旋转到与AB都在EF的左侧时,BAF=105,DCF=65,DCF=3t-(180-65+180)=3t-295,BAC=t-105,要使ABCD,则DCF=BAC,即3t-295=t-105,解得t=95,此时t105,此情况不存在综上所述,t为5秒或95秒时,CD与AB平行【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论二十五、解答题25(1)3;
34、(2)98;(3)P=(+2),理由见解析;(4)360.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到CAP=解析:(1)3;(2)98;(3)P=(+2),理由见解析;(4)360.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到CAP=BAP,BDP=CDP,再根据三角形内角和定理得到CAP+C=CDP+P,BAP+P=BDP+B,两等式相减得到CP=PB,即P=(C+B),然后把C=100,B=96代入计算即可;(3)与(2)的证明方法一样得到P=(2C+B)(4)根据三角形内
35、角与外角的关系可得B+A=1,C+D=2,再根据四边形内角和为360可得答案【详解】解:(1)在图2中有3个以线段AC为边的“8字形”,故答案为3;(2)CAB和BDC的平分线AP和DP相交于点P,CAP=BAP,BDP=CDP,CAP+C=CDP+P,BAP+P=BDP+B,CP=PB,即P=(C+B),C=100,B=96P=(100+96)=98;(3)P=(+2);理由:CAP=CAB,CDP=CDB,BAP=BAC,BDP=BDC,CAP+C=CDP+P,BAP+P=BDP+B,CP=BDCBAC,PB=BDCBAC,2(CP)=PB,P=(B+2C),C=,B=,P=(+2);(4)B+A=1,C+D=2,A+B+C+D=1+2,1+2+F+E=360,A+B+C+D+E+F=360故答案为360
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100