ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:346KB ,
资源ID:486510      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/486510.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2007年福建高考文科数学真题及答案.doc)为本站上传会员【Fis****915】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2007年福建高考文科数学真题及答案.doc

1、2007年福建高考文科数学真题及答案 第I卷 (选择题共60分) 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知全集U=|1,2,3,4,5|,且A={2,3,4},B={1,2},则(CUB)等于 A.{2} B.{5} C.{3,4} D.{2,3,4,5} 解析:(CUB)={3,4,5},(CUB)={3,4},选C (2)等比数列{an}中,a4=4,则a2·a6等于 A.4 B.8 C.16 D.32 解析:a2·a6= a42=16,选C (3)

2、sin15°cos75°+cos15°sin105°等于 A.0 B. C. D.1 解析:sin15°cos75°+cos15°sin105°= sin215°+cos215°=1,选D (4)“|x|<2”是“x2-x-6<0”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 解析:由|x|<2得-2

3、解析:由2x+=kπ得x=,对称点为(,0)(),当k=1时为(,0),选A (6)如图,在正方体ABCD-A1B1C1D1中,E、F、G、H分别为AA1、AB、BB1、BC1的中点,则异面直线EF与GH所成的角等于 A.45° B.60° C.90° D.120° 解析:连A1B、BC1、A1C1,则A1B=BC1=A1C1,且EF∥A1B、GH∥BC1,所以异面直线EF与GH所成的角等于.60°,选B (7)已知f(x)为R上的减函数,则满足的实数x的取值范围是 A.(-,1) B.(1,+) C.(-,0)(0,1) D.(

4、0)(1,+) 解析:由已知得解得或x>1,选D (8)对于向量a、b、c和实数,下列命题中真命题是 A.若a·b=0,则a=0或b=0 B.若a=0,则=0或a=0 C.若a2=b2,则a=b或a=-b D.若a-b=a·c,则b=c 解析: a⊥b时也有a·b=0,故A不正确;同理C不正确;由a·b=a·c得不到b=c,如a为零向量或a与b、c垂直时,选B (9)已知m,n为两条不同的直线,为两个不同的平面,则下列命题中正确的是 A.∥,n∥ ∥ B.∥,,m∥n C.m⊥,m⊥nn∥ D.n∥m,n⊥m⊥ 解析:A中m、n少相交条件,不正确;B

5、中分别在两个平行平面的两条直线不一定平行,不正确;C中n可以在内,不正确,选D (10)以双曲线x2-y2=2的右焦点为圆心,且与其右准线相切的圆的方程是 A.x2+y2-4x-3=0 B.x2+y2-4x+3=0 C.x2+y2+4x-5=0 D.x2+y2+4x+5=0 解析:双曲线x2-y2=2的右焦点为(2,0),即圆心为(2,0),右准线为x=1,半径为1,圆方程为,即x2+y2-4x+3=0,选B (11)已知对任意实数x,有f(-x)=-f (x),g(-x)=g(x),且x>0时f’’(x)>0,g’ (x) >0,则x<0时 A.f’(x)

6、>0,g’(x)>0 B.f ’(x)>0,g’(x)<0 C.f ’(x)<0,g’(x)<0 D.f ’ (x)<0,g’(x)<0 解析:由已知f(x)为奇函数,图像关于原点对称,在对称区间的单调性相同;g(x)为偶函数,在对称区间的单调性相反, x>0时f’’(x)>0,g’ (x) >0,递增,当x<0时, f(x) 递增, f ’(x)>0; g(x)递减, g’(x)<0,选B (12)某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10000个号码.公司规定:凡卡号的后四位带有数字“4”

7、或“7” 的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为 A.2000 B.4096 C.5904 D.8320 解析:10000个号码中不含4、7的有84=4096,故这组号码中“优惠卡”的个数为10000-4096=5904,选C 第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。 (13)(x2+)6的展开式中常数项是 .(用数字作答) 解析:法一:由组合数性质,要使出现常数项必须取2个x2,4个,故常数项为 法二:展开后可得常数项为15 (14)已知实数

8、x、y满足则z=2x-y的取值范围是 . 解析:画出可行域知z=2x-y在(-1,3)取得最小值-5,在(5,3)取得最大值7,范围是[-5,7] (15)已知长方形ABCD,AB=4,BC=3,则以A、B为焦点,且过C、D两点的椭圆的离心率为 。 解析:由已知C=2, (16)中学数学中存在许多关系,比如“相等关系”、“平行关系”等等.如果集合A中元素之间的一个关系“-”满足以下三个条件: (1)自反性:对于任意a∈A,都有a-a; (2)对称性:对于a,b∈A,若a-b,则有b-a; (3)传递性:对于a,b,c∈A,

9、若a-b,b-c,则有a-c. 则称“-”是集合A的一个等价关系.例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立).请你再列出两个等价关系: . 解析:答案不唯一,如“图形的全等”、“图形的相似”、“非零向量的共线”、“命题的充要条件”等等. 三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 在△ABC中,tanA=,tanB=. (I)求角C的大小; (II)若AB边的长为,求BC边的长 本小题主要考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及推理

10、知运算能力.满分12分. 解:(I)∵C=-(A+B), ∴tanC=-tan(A+B)= 又∵0

11、记“甲第i次试跳成功”为事件A1,“乙第i次试跳成功”为事件B1. 依题意得P(A1)=0.7,P(B1)=0.6,且A1B1(i=1,2,3)相互独立. (I)“甲第三次试跳才成功”为事件A3,且三次试跳相互独立, ∴P(A3)=P()P=0.3×0.3×0.7=0.063. 答:甲第三次试跳才成功的概率为0.063. (II)甲、乙两支在第一次试跳中至少有一人成功为事件C, 解法一:C=A1彼此互斥, ∴P(C) = =0.7×0.4+0.3×0.6+0.7×0.6 = 0.88. 解法二:P(C)=1-=1-0.3×0.4=0.88. 答

12、甲、乙两人在第一次试跳中至少有一人成功的概率为0.88. (III)设“甲在两次试跳中成功i次”为事件Mi(i=0,1,2), “乙在两次试跳中成功i次”为事件Ni(i=0,1,2), ∵事件“甲、乙各试跳两次,甲比乙的成功次数恰好多一次”可表示为M1N0+M2N1,且M1N0、M2N1为互斥事件. ∴所求的概率为 =×0.7×0.3×0.42+0.72××0.6×0.4 =0.0672+0.2352 =0.3024. 答:甲、乙每人试跳两次,甲比乙的成功次数恰好多一次的概率为0.3024. (19)(本小题满分12分) 如图,正三棱柱ABC-A1B1C1的所

13、有棱长都为2,D为CC1中点. (I)求证:AB1⊥平面A1BD; (II)求二面角A-A1D-B的大小. 本小题主要考查直线与平面的位置关系,三面角的大小等知识,考查空间想象能力、逻辑思维能力和运算能力 解法一:(I)取BC中点O,连结AO. ∵△ABC为正三角形,∴AO⊥BC. ∵正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1, ∴AO⊥平面BCC1B1, 连结B1O,在正方形BB1C1C中,O、D分别为BC、CC1的中点, ∴B1O⊥BD, ∴AB1⊥BD. 在正方形ABB1A1中,AB1⊥A1B, ∴AB1⊥平面A1BD. (II)设AB1与A1

14、B交于点C,在平面A1BD中,作GF⊥A1D于F,连结AF,由(I)得AB1⊥平面A1BD, ∴∠AFG为二面A-A1B-B的平面角. 在△AA1D中,由等面积法可求得AF=, 又∵AG==, ∴sin∠AFG=, 所以二面角A-A1D-B的大小为arcsin. 解法二:(I)取BC中点O,连结AO. ∵△ABC为正三角形,∴AO⊥BC. ∵正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1, ∴AO⊥平面BCC1B1. 取B1C1中点O1,以a为原点,的方向为x、y、z轴的正方向建立空间直角坐标系,则B(1,0,0),D (-1,1,0),A1(0,2,),

15、A(0,0,),B1(1,2,0), ∴ ∵ ∴⊥⊥, ∴AB1⊥平面A1BD. (II)设平面A1AD的法向量为n=(x,y,z). ∵n⊥⊥, ∴ ∵ ∴ 令z=1得a=(-,0,1)为平面A1AD的一个法向量. 由(I)知AB1⊥A1BD. ∴为平面A1BD的法向量. cos===-. ∴二面角A-A1D-B的大小为arccos. (20)(本小题满分12分) 设函数f(x)=tx2+2t2x+t-1(x∈R,t>0). (I)求f (x)的最小值h(t); (II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围

16、 本题主要考查函数的单调性、极值以及函数导数的应用,考查运用数学知识分析问题解决问题的能力. 解:(I)∵ (), ∴当x=-t时,f(x)取最小值f(-t)=-t2+t-1, 即h(t)=-t3+t-1. (II)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m, 由g’(t)=-3t2+3=0得t=1,t=-1(不合题意,舍去). 当t变化时g’(t)、g(t)的变化情况如下表: T (0,1) 1 (1,2) g’(t) + 0 - g(t) 递增 极大值1-m 递减 ∴g(t)在(0,2)内有最大值g(1)=1-m h(t)

17、<-2t+m在(0,2)内恒成立等价于g(t)<0在(0,2)内恒成立, 即等价于1-m<0 所以m的取值范围为m>1 (21)(本小题满分12分) 数列{an}的前N项和为Sn,a1=1,an+1=2Sn (n∈N*). (I)求数列{an}的通项an; (II)求数列{nan}的前n项和T. 本小题考查数列的基本知识,考查等比数列的概念、通项公式及数列的求和,考查分类讨论及归的数学思想方法,以及推理和运算能力.满分12分. 解:(I)∵an+1=2Sn,, ∴Sn+1-Sn=2Sn, ∴=3. 又∵S1=a1=1, ∴数列{Sn}是首项为1、公比为3的等比数列,

18、Sn=3n-1(n∈N*). ∴当n2时,an-2Sn-1=2·3n-2(n2), ∴an= (II)Tn=a1+2a2+3a3+…+nan. 当n=1时,T1=1; 当n2时,Tn=1+4·30+6·31+2n·3 n-2,…………① 3Tn=3+4·31+6·32+…+2n·3n-1,…………② ①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n·3 n-1 =2+2· =-1+(1-2n)·3n-1 ∴Tn=+(n-)3n-1 (n2). 又∵Tn=a1=1也满足上式, ∴Tn=+(n-)3n-1(n∈N*) (22)(本小题

19、满分14分) 如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作l的垂线,垂足为点Q,且 · (I)求动点P的轨迹C的方程; (II)过点F的直线交轨迹C于A、B两点,交直线l于点M. (1)已知的值; (2)求||·||的最小值. )本小题考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.满分14分. 解法一:(I)设点P(x,y),则Q(-1,y),由得: (x+1,0)·(2,-y)=(x-1,y)·(-2,y),化简得C:y2=4x. (II)(1)设直线AB的方程为: x=my+

20、1(m≠0). 设A(x1,y1),B(x2,y2),又M(-1,-). 联立方程组,消去x得: y2-4my-4=0, △ =(-4m)2+12>0, 由得: ,整理得: , ∴ = =-2- =0. 解法二:(I)由 ∴·, ∴=0, ∴ 所以点P的轨迹C是抛物线,由题意,轨迹C的方程为:y2=4x. (II)(1)由已知 则:…………① 过点A、B分别作准l的垂线,垂足分别为A1、B1, 则有:…………② 由①②得: (II)(2)解:由解法一: ·=()2|y1-yM||y2-yM| =(1+m2)|y1y2-yM(y1+y2)|+yM2| =(1+m2)|-4+ ×4m+| = =4(2+m2+) 4(2+2)=16. 当且仅当,即m=1时等号成立,所以·最小值为16.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服