1、1.理解整式的概念;2.掌握合并同类项和去括号的法则;3.能灵活进行整式加法和减法运算。目标要求目标要求:本章知识结构本章知识结构 单单 项项 式式例例1 下列各式子中,是单项式的有_(填序号)、注意:注意:1 1,单个的,单个的字母字母或或数字数字也是也是单项式单项式;2 2,用,用加减号加减号把数字或字母连接在一起把数字或字母连接在一起 的式子的式子不是单项式不是单项式;3 3,都是都是数字或字母的积这样数字或字母的积这样 的式子是的式子是单项式单项式;4 4,当式子中出现,当式子中出现分母分母时,要留意分母里时,要留意分母里有有 没有字母没有字母,有字母有字母的就的就不是单项式不是单项式
2、,如,如 果果分母没有字母分母没有字母的仍有可能是单项式的仍有可能是单项式 (注:(注:“”当作数字,而不是字母)当作数字,而不是字母)单项式单项式系数系数次数次数例例2 指出下列单项式的系数和次数;注意:注意:1 1,字母的,字母的系数系数“1”1”可以省略的,但不代表可以省略的,但不代表没有系没有系 数数(次数也是同样道理);(次数也是同样道理);2 2,有分母有分母的单项式,的单项式,分母中的数字分母中的数字也是单项式系也是单项式系 数的一部分;数的一部分;3 3,注意,注意“”不是不是字母字母,而是,而是数字数字,属于系数属于系数的一的一 部分;部分;4 4,计算次数的时候并不是简单的
3、见到指数就相,计算次数的时候并不是简单的见到指数就相 加,注意单项式的次数指的是加,注意单项式的次数指的是字母的指数和字母的指数和;下列各个式子中,书写格式正确的是()1 1、代数式中用到乘法时,若是数字与数字乘,要用、代数式中用到乘法时,若是数字与数字乘,要用“”若是数字与字母乘,乘号通常写成若是数字与字母乘,乘号通常写成”.”.”或省略不写,如或省略不写,如 3y3y应写成应写成3y3y或或3y3y,且数字与字母相乘时,且数字与字母相乘时,字母与字母与 字母字母相乘,相乘,乘号通常写成乘号通常写成“”或省略不写。或省略不写。2 2、带分数与字母相乘,要写成、带分数与字母相乘,要写成假分数假
4、分数3 3、代数式中出现除法运算时,一般用、代数式中出现除法运算时,一般用分数写分数写,即用,即用分数分数 线线代替代替除号除号。4 4、系数系数一般写在一般写在字母字母的的前面前面,且,且系数系数“1”1”往往会省略;往往会省略;F单项式知识点总结单项式知识点总结定义:定义:定义:定义:单项式中的单项式中的单项式中的单项式中的_。次数:次数:次数:次数:1.当单项式的系数当单项式的系数是是1或或-1时,时,“1”通常省略不写。通常省略不写。单项式:单项式:单项式:单项式:系数:系数:系数:系数:数字数字数字数字或或或或字母的乘字母的乘字母的乘字母的乘积积积积由由由由_组成的式子。组成的式子。
5、组成的式子。组成的式子。单独的单独的单独的单独的_或或或或_也是单项式。也是单项式。也是单项式。也是单项式。单项式中的单项式中的单项式中的单项式中的_._.数字因数数字因数数字因数数字因数所有所有所有所有字母的指数字母的指数字母的指数字母的指数和和和和一个数一个数一个数一个数一个字母一个字母一个字母一个字母注意的问题:注意的问题:2.当式子分母中出现字母时不是单项式。当式子分母中出现字母时不是单项式。3.圆周率圆周率是常数,不要看成字母。是常数,不要看成字母。4.当单项式的系数当单项式的系数是带分数时,是带分数时,通常写成通常写成假分数。假分数。5.单项式的系数应包括它前面的单项式的系数应包括
6、它前面的性质符号性质符号。6.单项式次数是指单项式次数是指所有所有字母的次数的和字母的次数的和,与数字的次数没,与数字的次数没有关系。有关系。7.单独的单独的数字数字不含字母不含字母,规定它规定它的次数是零次的次数是零次.多多 项项 式式例例3 下列多项式次数为3的是()C注意(1)多项式的次数不是所有项的次数的和,而是它的最高次项次数;(2)多项式的每一项都包含它前面的符号;(3)再强调一次,“”当作数字,而不是字母例例4 请说出下列各多项式是几次几项式,并写出多项式的最高次项和常数项;多项式知识点总结多项式知识点总结定义:几个定义:几个定义:几个定义:几个_._.常数项:多项式中常数项:多
7、项式中常数项:多项式中常数项:多项式中_._.多项式的次数:多项式的次数:多项式的次数:多项式的次数:_._.项:项:项:项:组成多项式中的组成多项式中的组成多项式中的组成多项式中的_._.有几项,就叫做有几项,就叫做有几项,就叫做有几项,就叫做_._.1.在确定多项式的项时,要连同它前面的在确定多项式的项时,要连同它前面的符号,符号,2.一个多项式的次数一个多项式的次数最高项的次数最高项的次数是几,就说这个多项式是是几,就说这个多项式是几次多项式。几次多项式。3.在多项式中,每个单项式都是这个多项式的项,每一项都在多项式中,每个单项式都是这个多项式的项,每一项都有系数,但有系数,但对整个多项
8、式来说,没有系数的概念对整个多项式来说,没有系数的概念,只有次数,只有次数的概念。的概念。多项式多项式多项式多项式单项式的单项式的单项式的单项式的和和和和每一个单项式每一个单项式每一个单项式每一个单项式几项式几项式几项式几项式不含字母的项不含字母的项不含字母的项不含字母的项多项式中次数多项式中次数最高最高的项的次数。的项的次数。注意的问题:注意的问题:同同 类类 项项例例5 判断下列各式是否是同类项?点拨:点拨:对于对于(1)(1)、(3)(3),考察的是同类项的定义,所含,考察的是同类项的定义,所含字母相同字母相同,相同字母相同字母的的指数也相同指数也相同的称为的称为同类项同类项;所以;所以
9、(1)(1)、(3)(3)不是同类不是同类项;项;对于对于(2)(2),虽然好像它们的次数不一样,但其实它们都是,虽然好像它们的次数不一样,但其实它们都是常数项常数项,所以,它们都,所以,它们都是同类项是同类项;对于对于(4)(4),虽然它们的,虽然它们的系数不同系数不同,字母的顺序字母的顺序也也不同不同,但,但它依然满足同类项的定义,它依然满足同类项的定义,是同类项是同类项;答:(2)、(4)是同类项,(1)(3)不是同类项;2.2.若若若若 与与与与 是同类项,则是同类项,则是同类项,则是同类项,则m+n=_.m+n=_.4.4.若若若若 ,则,则,则,则m+n-pm+n-p=_=_5 5
10、4 43.3.若若若若 与与与与 的和是一个单项式,的和是一个单项式,的和是一个单项式,的和是一个单项式,则则则则 =_.=_.-4-41.1.下列各式中,是同类项的是:下列各式中,是同类项的是:下列各式中,是同类项的是:下列各式中,是同类项的是:_ 与 与 与 与 与 -125与例例6例例7 下列合并同类项的结果错误的有_.、注意:1,合并同类项的法则是把同类项的系数相加,字母和字母的次数不变;2,合并同类项后也要注意书写格式;3,如果两个同类项的系数互为相反数,那么合并同类项后,结果得_;0例例8 合并同类项:小明的解法:小明的解法:小明的解法:小明的解法:(1)(1)错在把所有项都当作同
11、类项了;错在把所有项都当作同类项了;错在把所有项都当作同类项了;错在把所有项都当作同类项了;正确的解法:正确的解法:例例9 王强班上有男生m人,女生比男生的一半多5人,王强班上的总人数(用m表示)为_人。易错点:结果不进行化简,直接写点拨:结果中有 它们是同类项,应合并以保证最后的结果最简.正确的写法是同类项知识点总结同类项知识点总结同类项的定义:同类项的定义:同类项的定义:同类项的定义:(两相同)(两相同)(两相同)(两相同)合并同类项概念:合并同类项概念:合并同类项概念:合并同类项概念:_.合并同类项法则:合并同类项法则:合并同类项法则:合并同类项法则:2._2._不变。不变。不变。不变。
12、2._2._相同。相同。相同。相同。1._1._相同,相同,相同,相同,字母字母字母字母相同的字母的指数也相同的字母的指数也相同的字母的指数也相同的字母的指数也1._1._相加减相加减相加减相加减;字母和字母的指数字母和字母的指数字母和字母的指数字母和字母的指数系数系数系数系数同类项同类项同类项同类项注意:注意:注意:注意:几个几个几个几个常数项常数项常数项常数项也是也是也是也是_同类项。同类项。同类项。同类项。(两无关)(两无关)(两无关)(两无关)2.2.与与与与_无关。无关。无关。无关。1.1.与与与与_无关无关无关无关系数系数系数系数 字母的位置字母的位置字母的位置字母的位置把多项式中
13、的同类项合并成一项把多项式中的同类项合并成一项把多项式中的同类项合并成一项把多项式中的同类项合并成一项去去 括括 号号例例10 判断下列各式是否正确:()()()()去括号时,去括号时,1 1注意注意括号外面的符号括号外面的符号,括号前括号前面是面是“+”+”号,把括号和它号,把括号和它前面的前面的“+”+”号去掉号去掉,括号里各项都,括号里各项都不用变符号不用变符号;括号前面括号前面是是“”号号,把,把括号和它前面的括号和它前面的“”号去掉号去掉,括号里各项都,括号里各项都改变符号改变符号。2 2注意注意外面有系数的外面有系数的,各项都要,各项都要乘以那个系数乘以那个系数;例例11 化简下列
14、各式:化简下列各式:整式的加减一般步骤是 (1)如果有括号就先去括号,(2)然后再合并同类项.注意:有多重括号的,一般先去小括号,再去中括号,最后再去大括号;例例12 一个多项式一个多项式A A加上加上 得得 ,求这个多项式求这个多项式A A?例例13 若多项式 计算多项式A-2B;注意:注意:列式时要先列式时要先加上括号加上括号,再,再去括号去括号;去括号及整式加减去括号及整式加减混合运算规律总结混合运算规律总结整式的加减混合运算步骤整式的加减混合运算步骤(有括号先去括号有括号先去括号)1.1.找同类项,做好标记。找同类项,做好标记。找同类项,做好标记。找同类项,做好标记。2.2.利用加法的
15、交换律和结合律把同类项放在一起。利用加法的交换律和结合律把同类项放在一起。利用加法的交换律和结合律把同类项放在一起。利用加法的交换律和结合律把同类项放在一起。3.3.利用乘法分配律计算结果。利用乘法分配律计算结果。利用乘法分配律计算结果。利用乘法分配律计算结果。4.4.按要求按按要求按按要求按按要求按“升升升升”或或或或“降降降降”幂排列。幂排列。幂排列。幂排列。找找找找运运运运合合合合按按按按1.1.如果括号外的因数是如果括号外的因数是如果括号外的因数是如果括号外的因数是正数正数正数正数,去括号后原括,去括号后原括,去括号后原括,去括号后原括号内各项的符号与原来的符号号内各项的符号与原来的符
16、号号内各项的符号与原来的符号号内各项的符号与原来的符号相同相同相同相同。2.2.如果括号外的因数是如果括号外的因数是如果括号外的因数是如果括号外的因数是负数负数负数负数,去括号后原括,去括号后原括,去括号后原括,去括号后原括号内各项的符号与原来的符号号内各项的符号与原来的符号号内各项的符号与原来的符号号内各项的符号与原来的符号相反相反相反相反。“去括号,看符号。是去括号,看符号。是去括号,看符号。是去括号,看符号。是+号,不变号,是号,不变号,是号,不变号,是号,不变号,是-号,全变号号,全变号号,全变号号,全变号”一:去括号一:去括号一:去括号一:去括号二:计算二:计算二:计算二:计算(按照
17、先小括号,再中括号,最后大括号顺序按照先小括号,再中括号,最后大括号顺序按照先小括号,再中括号,最后大括号顺序按照先小括号,再中括号,最后大括号顺序)先化简,再求值先化简,再求值(先(先去括号去括号)(降幂降幂排列)排列)(合并同类项,(合并同类项,化简化简完成)完成)当当x=-2x=-2时时(代入代入)(代入时注意(代入时注意添上括号,添上括号,乘号乘号改回改回“”)例例14 当当当当x=1x=1时,时,时,时,则当则当则当则当x=-1x=-1时,时,时,时,解:将解:将解:将解:将x x=1=1代入代入代入代入 中得:中得:中得:中得:a+b-2=3 a+b=5;当当当当x x=-1=-1
18、时时时时 =-a-b-2 =-(a+b)-2 =-7=-5-2例例15整体代换思想整体代换思想 如果关于如果关于如果关于如果关于x x的多项式的多项式的多项式的多项式 的值与的值与的值与的值与x x无关,则无关,则无关,则无关,则a a的取值为的取值为的取值为的取值为_._.解:原式解:原式解:原式解:原式=由题意知,则:由题意知,则:由题意知,则:由题意知,则:6 6a a-6=0-6=0a a=1=11例例16 如果关于如果关于如果关于如果关于x x,y y的多项式的多项式的多项式的多项式 的差不含有二次项,求的差不含有二次项,求的差不含有二次项,求的差不含有二次项,求 的值。的值。的值。
19、的值。解:原式解:原式解:原式解:原式=由题意知,则:由题意知,则:由题意知,则:由题意知,则:m-3=0 m-3=02+2n=02+2n=0m=3,n=-1;m=3,n=-1;=-1 =-1例例17a0b 已知数已知数a,b在数轴上的位置如图所示在数轴上的位置如图所示化简下列式子化简下列式子化简下列式子化简下列式子:原式原式原式原式=-=-a a-2-(-2-(a+ba+b)-3()-3(b-ab-a)解:由题意知:解:由题意知:解:由题意知:解:由题意知:a a0,00且且且且|a a|b b|=-=-a a+2+2a a+b b-3-3b b+3+3a a=-=-a a+2+2a a+2
20、+2b b-3-3b b+3+3a a=(-a a+2+2a a+3+3a a)+(2 2b b-3 3b b)=4=4a a-b b例例18整式中实际问题整式中实际问题 某种手机卡的市话费上次已按原收费标准某种手机卡的市话费上次已按原收费标准降低了降低了mm元元/分分钟钟,现在,现在再次下调再次下调2020,使收费标准为使收费标准为n n元元/分钟分钟,那么原收,那么原收费标准为费标准为 ().B B 点拨:点拨:为了弄清各数之间的关系,我们可以借助方程来求为了弄清各数之间的关系,我们可以借助方程来求解解.假设原收费标准为每分钟假设原收费标准为每分钟x x元,可得:元,可得:解得解得 .应选
21、应选B.B.例例19 若长方形的一边长为若长方形的一边长为a a+2+2b b,另一边长比它的另一边长比它的3 3倍倍少少a-ba-b,求这个长方形的周长?求这个长方形的周长?分析:分析:如果直接列式的话,非常麻烦,我们可以如果直接列式的话,非常麻烦,我们可以先求出先求出另一边长另一边长,再求,再求周长周长,这样就比较容易求出答案;,这样就比较容易求出答案;解:解:一边长为:一边长为:a+2ba+2b;另一边长为:另一边长为:3(3(a+2ba+2b)-()-(a-ba-b)=3a+6b-a+b3a+6b-a+b =3a-a+6b+b3a-a+6b+b =2a+7b2a+7b;周长为:周长为:
22、2(a+2b+2a+7b)2(a+2b+2a+7b)=2(a+2a+2b+7b)=2(a+2a+2b+7b)=2(3a+9b)=2(3a+9b)=6a+18b;=6a+18b;答:答:答:答:长方形的周长为长方形的周长为长方形的周长为长方形的周长为6 6a a+18+18b b例例20 小小 结结本章的知识结构本章的知识结构整式的加减整式的加减整式的整式的概念概念整式的整式的计算计算单项式单项式多项式多项式系数系数次数次数项,项数,常数项,项,项数,常数项,最高次项最高次项次数次数同类项同类项与合并同类项与合并同类项去括号去括号化简求值化简求值用字母来表示生活中的量用字母来表示生活中的量作作 业业1.报纸复习资料第二章做完(这是昨天的了,今天再强调一遍)2.第20期报纸期末水平测试B做完
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100