ImageVerifierCode 换一换
格式:DOC , 页数:37 ,大小:386KB ,
资源ID:4824924      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4824924.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(电动汽车控制系统设计毕业设计论文.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

电动汽车控制系统设计毕业设计论文.doc

1、摘要在当前全球汽车工业面临金融危机和能源环境问题的巨大挑战的情况下,发展电动汽车,利用无污染的绿色能源,实现汽车能源动力系统的电气化,推动传统汽车产业的战略转型,在国际上已经形成了广泛共识。本课题以电动汽车他励电机控制器为例,以实现电动汽车的加、减速,起、制动等基本功能以及一些特殊情况下的处理。以开发出高可靠性、高性能指标、低成本并且具有自主知识产权的电动汽车电机驱动控制系统为目的。主要包括硬件电路板的设计,以及驱动系统的软件部分的仿真调试。在驱动系统硬件设计中,这里主控制芯片采用ATMEL公司的ATmega64芯片。功率模块采用多MOSFET并联的方式,有效的节约了成本。电源模块采用基于UC

2、3842的开关电源电路。选用IR公司的IR2110作为驱动芯片,高端输出驱动电流可到19A,低端输出驱动电流可到2.3A,能够提供7个MOSFET并联时驱动电流。对于电流检测模块,本文没有采用电流传感器或者是康铜丝,而是采用了一种基于MOSFET管压降的电流检测电路,这种方式即节约了成本也保证了检测精度。驱动系统的软件设计中,主要实现的功能为:开关量的检测处理,故障检测,串口通讯,励磁、电枢控制,报警功能等。针对他励电机电动汽车的控制特性,提出了节能控制算法和最大转矩控制算法,用于提高电动汽车的续航里程和加速性能。他励直流电动机驱动系统能够很好的运行在电动汽车上,性能可靠、结构简单,并且节约了

3、成本,使电动汽车的性价比大大提高,有利于电动汽车的普及。关键词:电动汽车,ATmega64,他励直流电机,PID模糊控制目录摘要1第一章 绪论1.1纯电动汽车在国内的发展状况31.2 国外电动汽车发展现状31.3 本课题的任务和主要工作4第二章 他励电动机的控制理论基础21他励直流电动机的调速与制动5211直流电动机电枢电动势和电磁转矩5212 他励直流电动机的机械特性6第三章系统的硬件设计31系统硬件的整体设计方案1032主控制器MCU的介绍10321 MCU的选择10322 ATmega64的特性与内部结构1133开关电源模块1234电流检测模块1335驱动电路的设计1636电压检测电路1

4、737温度检测电路1838加减速踏板信号检测电路1939 开关量输入信号20310蜂鸣器报警电路20311通讯模块电路设计21312硬件抗干扰的设计22313本章小结23第四章系统的软件设计4.1 电动汽车的控制策略研究24411再生制动控制策略24412驱动控制策略2442 主要任务模块的详细设计26421主程序2642.2 励磁、电枢PWM控制模块27423 电动机速度测量2843 本章小结29第五章 总结30参考文献31第一章 绪论1.1 纯电动汽车在国内的发展状况与世界其他国家一样,电动汽车研发工作在我国也正在如火如荼的进行着:“十五”期间,国家从维护我国能源安全、改善大气环境、提高汽

5、车工业竞争力、实现我国汽车工业的跨越式发展的战略高度考虑,设立“电动汽车重大科技专项,通过组织企业、高等院校和科研机构,集中国家、地方、企业、高校、科研院所等方面的力量进行联合攻关。为此,从2001年10月起,国家共计拨款88亿元作为这一重大科技专项的经费【1】。我国电动汽车重大科技专项实施4年来,经过200多家企业、高校和科研院所的2 000多名技术骨干的努力,目前已取得重要进展:燃料电池汽车已经成功开发出性能样车,燃料电池轿车累计运行4000km,燃料电池客车累计运行8000km:混合动力客车已在武汉等地公交线路上试验运行超过140000km:纯电动轿车和纯电动客车均已通过国家有关认证试验

6、。国内主要汽车制造商对纯电动汽车的开发和研制也投入了相当的人力和物力,并取得了一定的成果。北京奥运会期间,奇瑞、长安、东风、一汽、京华及福田等汽车生产企业联合清华大学、北京理工大学等单位,向社会提供了自主研发的55辆纯电动锂电池汽车、25辆混合动力客车、75辆混合动力轿车、20辆燃料电池轿车,以及400辆纯电动场地车等各种新能源汽车为奥运会服务。奥运会后,科技部还将计划连续3年在国内10个以上有条件的大中城市开展千辆级混合动力汽车、纯电动汽车和燃料电池汽车、以及提供基础设施的大规模示范,到2010年底节能与新能源汽车达到1万辆。最近,比亚迪公司新推出一款商业化的电动汽车比亚迪e6,为我国电动汽

7、车产业做出了重大贡献。1.2 国外电动汽车发展现状近二十多年来,西方工业发达国家把电动汽车的研究开发看是作解决环境问题和能源问题的一种有效手段。美国政府动员全美所有科研机构进行电动汽车(Electric vehicle,简称EV)的研究,在1991年,美国通用汽车公司、福特汽车公司、克莱斯勒汽车公司共同协议,成立了“先进电池联合体”(USABC),共同研发新一代电动汽车所需要的高性能电池。为实现新的节能车而能保持现有汽车的价格和性能,美国先后推出了PNGV、Freedom CAR、AVP计划。法国政府推出“PREDIT m-20022006计划,并给购买EV的用户提供5000法郎的补贴。德国政

8、府同9个主要公司签订了一份理解备忘录,为创建一个清洁能源城市(柏林)而结成同盟。英国、意大利等欧洲国家都在开展电动汽车的研发工作。而日本政府更是特别重视电动汽车的研究和开发。1998年日本东京电力公司联合日本电池公司,共同开发了“ZA一牌电动汽车,该电动汽车采用了高新技术,使其具有当时EV的世界最高水平。而丰田汽车公司在1996年就已成功地研制出燃料电池汽车的生产样车,并先于其他汽车厂家在1997年开始批量生产混合动力电池汽车,成为环保技术领域和世界电动汽车产业化的领头羊。以上各国政府在大力扶持大型汽车集团的同时,纷纷通过制定环保和节能法规,采取投资、税收优惠、政府补贴促进消费的政策,旨在抢占

9、电动汽车产业制高点。代表着当代EV先进水平的福特汽车公司的Think、通用汽车公司的Impact、丰田汽车公司的Ecorn、Prius电动汽车、本田公司的Civic电动汽车正是这种竞争的产物。1.3 本课题的任务和主要工作本文在广泛查阅相关文献的基础上,设计基于ATmega64的他励电机电动汽车控制系统。本文的主要工作归纳为以下几点:1 介绍了他励电动机的控制理论基础与调速系统的仿真,为后章系统硬件与软件的设计做好了准备。2. 讨论系统的硬件设计。详细讨论了开关电源模块电路、电流检测电路、串口通信电路、驱动电路、及抗干扰电路的设计。3. 讨论系统的软件设计。设计系统的程序整体框架、各任务模块程

10、序、中断服务程序和抗干扰程序。4. 进行系统调试与实验。系统设计完成后进行硬件调试和软件调试,搭建实验平台,记录实验数据及图表,进行实验分析。第二章 他励电动机的控制理论基础21他励直流电动机的调速与制动为了满足各种生产机械对负载转矩特性的要求,在实际应用中需通过设法改变电动机的各种控制参数来达到所需的人为机械特性。由于他励直流电动机的可控参数多,易实现所需要的人为机械特性,所以在直流调速中较多地采用他励直流电动机,电动汽车中一般也是选用他励直流电动机作为直流驱动电动机。因此,需要给出直流电动机电枢电动势和电磁转矩的两个数学公式,从而导出他励直流电动机的机械特性数学方程式,即电动机的电磁转矩和

11、转速之间的函数关系式n=f(t),然后才能说明如何改变方程式中的相关参数来获得所需人为机械特性。211直流电动机电枢电动势和电磁转矩1)电枢电动势。电枢电动势是指直流电动机正常工作时,电枢绕组切割气隙磁通所产生的电动势。无论是发电机还是电动机,只要电枢旋转切割磁通就有电枢电动势。根据前述直流电动机的结构原理可导出直流电动机电枢电动势Ea为: (2.1)式(21)中 P电动机极对数;N电枢绕组总的导体数;a电枢绕组的支路对数;电动机每极磁通(Wb);n电动机转速(rmin);c(e)电动势常数。2)电磁转矩。电磁转矩是指直流电动机的电枢绕组流过电流时,这些载流导体在磁场中所受力而形成的总转矩。同

12、样按直流电动机的结构原理可推得直流电动机的电磁转矩T为: (2.2)式(22)中 I(a)电枢电流(A);C(t)转矩常数。电动势常数C(e)和转矩常数C(t)都是决定于电动机结构的数据,对于一台已制的电动机C(e)和C(T)都是恒定不变的常数,并且从式(21)和式(22)可知两者之间的关系为: 212 他励直流电动机的机械特性得出他励直流电动机的机械特性数学方程式: (2.3)式(2.3)中 R(a)电枢绕组内电阻; R(c)电枢外串联电阻; n(0) 理想空载转速; 机械特性斜率其中, 213他励直流电动机的调速通过对他励直流电动机的机械特性数学方程式(23)的分析,可知改变其中U、R(c

13、)三个参数即可改变其转速n。因此相应的调速方法也要降压、弱磁、串电阻三种:降压调速是改变电源电压U来获得恒转矩调速;弱磁调速是通过改变励磁电流I(f),从而改变电动机磁通量来获得恒功率调速;串电阻调速是通过逐级改变电枢回路中所串电阻R(c)来进行调速,它使机械特性变软,并增加了功耗,所以目前很少采用,主要用在大电动机的起动过程,即通过逐级减小电枢回路中所串电阻来减小起动电流。而前两种调速方法目前用得较多,并也是电动汽车中需配合采用的方法,现分别具体介绍如下:(1) 降低电源电压的恒转矩调速保持他励直流电动机的磁通为额定值,电枢回路不串电阻,若将电源电压分别降低为U1、U2、U3等不同数值时,则

14、可获得与固有机械特性平行的人为机械特性,如图21所示。图中所示的负载为恒转矩负载,在电源电压为额定值U(e)时,其工作点为e,电动机为额定转速n(e);当电压降低到U1时,工作点为A,转速为n(a);电压为U2时,工作点为B,转速为n(b)等。即转速随电源电压降低,调速方向是从基数(额定转速N(e)向下调节,并且电源电压为不同值时,其机械特性的斜率都与固有机械特性斜率相等,即特性较硬。通常电源电压不超过额定值,即采用连续降低电源电压来实现恒转矩无级调速,以获得如图23所示的从基速到零速段的调速控制。(2) 减弱磁通的恒功率调速由于通常电动机额定运行时均已在磁通近饱和状态,故一般只能采用减弱磁通

15、量的方法来调速。保持他励直流电动机电源为额定值,电枢回路不串联电阻,通过减小电动机的励磁电流I(f),即减弱电动机磁通时,其机械特性方程式为: (2.4)从式(24)中可看出n(0)随的减弱成反比例增加,而n随的二次方成反比地增加,若将近饱和额定磁通(e)的比例定为l,减弱后其比例也就小于l,平方后其比例是减小,因此n(0)比n增加得快,即减弱磁通后电动机的转速n将升高,调速方向是从基速(额定转速n(e)向上调节。弱磁调速的机械特性如图22所示。设电动机拖动恒转矩负载互运行于固有机械特性e点上,转速为n(e)。当磁通从(e)降到(1)时,转速n未能及时变化,而电枢电动势E(a)= c(e) n

16、(e),则因下降而减小,使电枢电流I(a)=(U-E(a)R(a)增大。由于R(a)较小,E(a)稍有减小就能使I(a)增加很多,此时虽然减小了,但它减小的幅度小于I(a)增加的幅度,所以电磁转矩T=c(t) I(a)还是增大了。增大后的电磁转矩即为图4-9中的T,工作点由e点过渡到=1的人为机械特性曲线上的C点。由于TT(L),转速n上升,E(a)随之增大,I(a)及T也跟着下降,当T下降到T=T(L)时,又建立新的转矩平衡,电动机转速升至n(a)稳定运行于A点。在弱磁调速中,电枢电压U为额定电压U(e),若保持电枢电流I(a)为额定电流I(e)不变时,则输出转矩T=C(T)I(e),代人式

17、(23)即可得变化磁通与转速n的关系式: (2.5)式(2.5)中C1常数1;于是电磁转矩可表示为, (2.6)式(2.6)中C2常数,C2=C1C(T)I(e)。带入电动机输出的功率公式有该式说明了弱磁调速时电动机允许输出功率为常数,与转速无关;允许输出转矩与转速成反比变化,即属恒功率调速方式。由于励磁电流一般较小,因此弱磁调速控制较方便、功耗也小,通过连续调节励磁电源的电压,即可实现无级的弱磁恒功率调速,以获得如图23所示的低速恒转矩、高速恒功率的调速特性。他励直流电动机弱磁升速能达到的最高转速,受电动机换向条件和机械强度的限制,一般他励直流电动机的最高转速只能升到额定转速n(e)的122

18、倍,对于特制的调速电动机才可升到ne的34倍。在此需特别注意的是励磁电流I(f),在运行中绝对不能为0,否则趋近于0,n趋近于无穷即将产生飞车,因此必须采取相应的互锁保护措施。为满足电动汽车行驶时能有较宽的速度要求,可把降低电枢电压和减弱磁通两种调速方法合起来实用,以获得低速恒转矩、高速恒功率的调速特性。【7-9】第三章系统的硬件设计本章主要介绍了他励直流电机电动汽车控制器的硬件设计,其中包括了控制器整体电路模块的设计、电源模块设计、驱动模块设计、电流检测模块设计和通信模块设计等。下面做具体的介绍。31系统硬件的整体设计方案本电动汽车动力系统是基于他励直流电机设计的,控制器的硬件设计既要达到动

19、力性能要求,也要达到便捷的操控性要求。根据第二章对他励直流电机调速系统提出的性能要求结合电动汽车的操控性要求,设计了如图31所示的硬件系统。本控制系统包括对电枢和励磁的分别PWM控制模块,电源模块,开关量处理模块,和模拟量处理模块,硬件性能满足设计要求,可在此硬件系统上对MCU进行软件设计,从而达到最终的控制要求。32主控制器MCU的介绍321 MCU的选择MCU是整个系统的控制核心,实现对数据的处理、存储和通讯等功能。选择一款合适的控制器对整个系统起着至关重要的作用。对于明确应用对象的系统,选择功能过少的控制器,难于完成控制任务,外围器件的扩展也会使系统的硬件结构笨重复杂从而使精确度降低。选

20、择功能过强的控制器,则会造成资源浪费,使产品的性能价格比下降。目前,市面上的控制器不仅种类繁多,而且在性能方面也各有不同。考虑到单片机结构简单容易上手且系统对速度要求不高,因此本系统选用一款高性价比的单片机充当MCU。在实际应用中,选择单片机时应考虑以下几点:【5】(1)单片机的基本性能参数,例如指令执行速度,程序存储器容量,中断能力及可用IO口引脚数量等。(2)单片机的增强功能,例如看门狗,AD功能,双串口,RTC(实时时钟),EEPROM,CAN接口等。(3)单片机的存储介质,对于程序存储器来说,Flash存储器和OTP(一次性可编程)存储器相比较,最好是选择Flash存储器。(4)芯片的

21、封装形式,如DIP封装,PLCC封装及表面贴附封装等。(5)芯片工作温度范围符合工业级、军品级还是商业级,如果设计户外产品,必须选用工业级芯片。(6)单片机的工作电压是否在常用范围内。(7)单片机的抗干扰性能。(8)编程器以及仿真器的价格,单片机开发是否支持高级语言以及编程环境要好用易学。(9)供货渠道是否畅通,价格是否低廉,是否具有良好的技术服务支持。根据上面所述的原则,结合本系统实际情况,仪表选用ATMEL公司生产的ATmega64单片机作为主控模块的核心芯片322 ATmega64的特性与内部结构ATmega64是ATMEL公司生产的高性能、低功耗的8位AVR高档微处理器,采用RISC结

22、构,具备IMIPSMHz(百万条指令每秒兆赫兹)的高速处理能力,有效缓减了系统在功耗和处理速度之间的矛盾。它可以广泛应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域。其主要特点和优点如下:【6】(1)自带廉价的程序存储器(FLASH)和非易失的数据存储器(EEPROM)。这些存储器可可擦写1000次以上,新工艺AVR器件,程序存储器擦写可达1万次以上,基本不再会有报废品产生。这样使程序开发更加方便,工作更可靠。(2)高速度,低功耗。在和M51单片机外接相同晶振条件下,AVR单片机的工作速度是M51单片机的30-一40倍;并且增加了休眠功能及低功率、非挥发的CMOS工艺

23、,一般耗电在125mA,典型功耗情况,WDT关闭时为100hA,其功耗远低于M51单片机,更适用于电池供电的应用设备。(3)工业级产品。具有大电流输出可直接驱动SSR和继电器,内有看门狗定时器,防止程序跑飞,从而提高了产品的抗干扰能力。工作电压范围宽(27-6ov),电源抗干扰性强。IO口功能强、驱动能力大。AVR的IO口是真正的IO口,能正确反映IO口输入输出的真实情况。IO口有输入输出,三态高阻输入,也可设定内部拉高电阻作输入端的功能,便于作各种应用特性所需(多功能IO口)。(4)程序下载方便。AVR程序写入可以并行写入(用万用编程器),也可用串行ISP(通过PC机RS232H或打印E1)

24、在线编程擦写。也就是说不需要将IC芯片拆下拿到万用编程器上擦写,可直接在电路板上进行程序修改、烧录等操作,方便产品升级。(5)具有模拟比较器、脉宽调制器、模数转换功能。AVR内带模拟比较器,IO口可作AD转换用,可组成廉价的AD转换器。使得工业控制中的模拟信号处理更为简单方便。(6)强大的通讯功能。内置了同步串行接HSH、通用串行接HUART、两线串行总线接HTWI(12C),使网络控制、数据传送更为方便。(7)超级保密功能,应用程序可采用多重保护锁功能。不可破解的位加密锁Lock bit技术,Flash保密位单元深藏于芯片内部,无法用电子显微镜看到保密位,可多次烧写的Flash且具有多重密码

25、保护锁死(LOCK)功能,因此可快速完成产品商品化,并可多次更改程序(产品升级)而不必浪费IC芯片或电路板,大大提高产品质量及竞争力。由上述内容可知,ATmega64的处理速度快且功耗低,内部自带的EPROM能够满足车辆运行曲线参数的存储,FOE的推挽设计使抗干扰能力更加增强,在线仿真功能使得程序开发更加简单,两USARTD满足系统的需要(232和485),内部各种增强功能的设计使得控制器外设更加简单。因此,本系统选用ATmega64作为主控制芯片。33开关电源模块、近年来,随着电源技术的飞速发展,开关稳压电源朝着高频化,集成化的方向发展,开关电源已经得到广泛的应用。高频开关稳压电源与线性电源

26、相比,具有如下优点1)效率高;2)体积小、重量轻;3)稳压范围广;4)性能灵活、驱动能力强;5)可靠性高,当开关损坏时,也不会有危及负载的高低压出现。而传统的开关电源普遍采用电压型PWM技术。电流型PWM是近年兴起的新技术,与电压型PWM相比,电流型PWM开关电源具有更好的电压和负载调整率,系统的稳定性和动态特性得以明显改善,特别是其内在的限流能力和并联均流能力可以使控制电路简单可靠。目前,小功率开关电源正从电压控制模式向电流控制模式方向转化。UC3842是高性能固定频率电流模式控制器专为离线和直流至直流变换器应用而设计,为设计人员提供只需要最少外部元件就能获得成本效益高的解决方案。此集成电路

27、具有可微调的振荡器、能进行精确的占空比控制、温度补偿的参考、高增益误差放大器。电流取样比较器和大电流图腾柱式输出,是驱动功率MOSFET的理想器件。本文以UC3842为核心控制部件,设计了DC60 V输入、DCl2V输出的单端反激式开关稳压电源。开关电源控制电路是一个电压、电流双闭环PI控制系统。主要的功能模块包括:启动电路、反馈电路、保护电路、整流电路。系统电源电路原理图如图33所示。在电路设计中,利用UC3842控制芯片内部的误差放大器、由R1、R2构成的电压反馈电路,和R3、C1共同构成电压闭环PI调节器,利用芯片内部的比较器与由R5电流检测和R4、C2滤波电路构成的电流反馈电路构成电流

28、闭环。外接的定时电阻R(T)和定时电容C(T),决定系统的工作频率,f=18R(T)C(T)。系统中取R(T)为75K,取C,为001uf。系统的工作频率f=24KHz。采用LM7905变换芯片产生-5V电源,给运放工作提供负电源。34电流检测模块在功率变换器中,经常要对流过主功率开关器件的电流进行检测,其目的主要有两个:1)对功率变换器进行过流保护;2)作为功率变换器控制器的电流反馈检测量。通常的做法是在功率变换器的直流母线上安装电流霍尔或电流互感器以提供电流反馈检测量。由于流过主开关器件的电流通常都较大,所采用的霍尔器件或电流互感器的额定参数也必须很大,不仅成本高、体积大、安装不方便,且不

29、便于实现功率变换器的高功率密度。文中介绍一种用半导体器件构成的电流检测电路,可以直接布置在功率变换器的控制器的印制板上,不仅成本低廉,体积小,安装方便,而且性能良好,还可以同功率变换器固化在一起形成专用集成电路(ASIC)。341 MOSFET电流检测原理MOSFET的通态电阻具有正的温度系数,约为04一08,有利于采用多MOSFET管并联。多只元件并联工作时,MOSFET间可以自动均流。当MOSFET功率开关流过通态电流时,由于通态导通电阻的存在,在其导通沟道上有一定的压降,又因器件的导通沟道电阻基本稳定,该压降与器件的通态电流成正比。所以,检测出主开关器件的通态压降也就是检测流过器件的电流

30、大小。即: (3.1)式(3.1)中,V(DSN)OS开关的漏源通态压降; R(D)沟道等效电阻;Id漏极电流。342他励直流电机电流检测方法他励直流电机控制器要采集的电流信号是电枢电流信号和励磁电流信号,电枢电流只有一相,励磁电流要采集的信号有两相,如图31硬件结构框图所示,电枢电流采集流过下桥MOSFET的电流,励磁采集流过H桥下桥MOSFET的电流。因为原理都是一样的,故只分析采集电枢电流的电路。由于电机所需功率比较大,所以每一项都是多个MOSFET管并联【251。他励电机电枢电流检测电路如图34所示。电路工作原理:Vlow驱动下桥MOSFET管,当Vlow为低电平时,D2右端也被钳位为

31、低电平,U1的正向输入端即为低电平,U1的负向输入端为固定电平,此时U1输出为低电平,U2输出也为低电平,经过U3,正反输入端都为0,所以U3输出为0。MCU电流采样点V04为O。当Vlow为高电平时,D2右端电压为高电平,此时U1输出为高阻态,Vol的电压为MOSFET电流在内阻上的压降加上D1的管压降,因为加上了D1的管压降,所以检测的电流不准,故我们采用了U2来去除管压降,此时U2输出为高阻态,V02的电压为二极管管压降。 V03=K*(V01V02);K=(R9R8)为电压放大倍数;V03经过C1和R10组成的滤波电路可得电压V04,此时V04的电压即能准确Ql上的管压降,将V04的电

32、压送入MCU进行处理。开关管管压降和电流检测电路相关点的波形分析如图35所示。T1和T3是导通时刻,T2是MOSFET关断时刻,Vl是导通时D3的管压降,V2是运放的零飘电压。35驱动电路的设计驱动电路是电力电子主电路与控制电路之间的接口,是实现主电路中的电力电子器件按照预定设想运行的重要环节。采用性能良好的驱动电路,可以使电力电子器件工作在较为理想的开关状态,缩短开关时间,减小开关损耗。此外,对器件或整个装置的一些保护措施也往往设在驱动电路中,或通过驱动电路实现,因此驱动电路对装置的运行效率、可靠性和安全性都有重要的影响。功率MOSFET为电压型驱动功率器件,常见的MOSFET栅极集成驱动器

33、为IR公司生产的IR21XX系列高压浮动MOS栅极驱动集成电路,该集成电路将驱动一个高压侧和一个低压侧MOSFET所需的绝大部分功能集成在一个封装内,它们依据自举原理工作,驱动高压侧和低压侧两个元件时,不需要独立的驱动电源,因而使电路得到简化,而且开关速度快,可以得到理想的驱动波形。在设计功率主电路的驱动电路中,要综合考虑减小开关损耗、驱动的一致性、抑制感生电压等问题,因此驱动电路对系统的可靠性有重要的影响。在系统设计中,选用IR2110作为驱动芯片。图36为单桥臂的驱动电路的原理图。在MOSFET栅极串联一个限流电阻Rl,降低MOSFET的开关速度,减小电压电流的变化率,降低EMI,且对动态

34、均流有显著的作用,但增大了MOSFET的开关损耗,经过反复实验,取R1的电阻值为15;电阻R2是防静电电阻,以免由于静电烧损功率管;采用15V的TvS防止驱动电压过高,损坏功率管。36电压检测电路在驱动控制系统中使用的功率器件是IRFB4310,其耐压值为100V,当电压过高时,功率器件会因过压而损坏,所以电压信号的检测是很重要的一个信号量。电压检测电路如图37所示。我们需要测量蓄电池电压值,在信号的采样点的选择上,我可以选择钥匙开关的接口点KEY作为蓄电池电压的采样点,为了配合系统的故障检测功能的实现,选择B+点作为蓄电池电压采样点。在驱动系统上电后,系统先通过二极管和PTC功率热敏电阻给功

35、率电路中的滤波电容充电,延时lS后,通过检测B+点的电压,电压过低,可以判断功率电路出现故障,发出故障报警信号;电压过高,发出报警信号。如果系统正常,吸合主接触器,系统进入运行状态,但也存在主接触器不能可靠吸合在运行的过程中断开的故障情况,此时B+点的电压将下降,系统应及时停止运行。当功率电路出现故障时,充电电路的电流较大,PTC功率电阻温度升高,其阻值升高,起到抑制充电电流,保护电路板的功能。37温度检测电路在驱动控制系统的功率电路中利用MOSFET的关断与导通来控制电机的转速。MOSFET的损耗都转换成热量,并变成温升,但MOSFET温度过高时,驱动控制系统的稳定性和可靠性将会下降,甚至造

36、成功率器件损坏。因此控制器设计时,考虑功率器件温升情况,通过采集功率结构散热器的温度信号,间接检测功率器件工作的环境温度,当功率器件的工作环境温度大于60时,驱动系统将发出警报声音,提醒用户;当功率器件的工作环境温度大于70时,驱动系统将强制停止运行,并发出报警声音,等待功率器件的工作环境温度小于60时,重新恢复正常工作状态。在驱动控制系统中电路设计中,温度信号的检测采用玻封的NTC热敏电阻装在散热器上作为温度传感器,NTC热敏电阻是负温度系数热敏电阻,当温度升高时,其电阻值变小,通过查阅器件资料,可得到具体型号的NTC热敏电阻在不同环境温度下所对应的阻值。通过电阻分压,将温度信号转换成电压信

37、号,输入微处理器的AD口。温度检测电路如图38所示。38加减速踏板信号检测电路电动机的运转速度由加速踏板的加速器控制。在本驱动系统中,加速器采用线性霍尔测量驾驶员的速度给定信号,其输出为05V45V的电压信号,该信号经过RC滤波和电压跟随器后送人微处理器的AD口。加速信号处理电路如图39所示。在加减速踏板中,安装了微动开关,配合加速器的使用,可以提高系统的可靠性,微动开关闭合时,系统根据加速器的信号进入电动状态运行,微动开关断开时,系统进入制动状态,速度为零,转入静止准备状态。39 开关量输入信号控制系统中使用的开关量输入有:加速器内部的微动开关信号、档位信号及电机驱动使能开关信号。当外部的开

38、关闭合时,相应的IO口接收到4V的高电平信号;当外部的开关断开时,相应的I0口接收到0的低电平信号。开关输入信号处理电路如图310所示。310蜂鸣器报警电路故障报警器件采用12V压电式蜂鸣器。当系统运行时发生电池电压在不允许的范围内、散热器温度超限,系统接线故障,功率桥损坏等故障时蜂鸣器将根据故障的情况,发出不同的报警提示声音。报警电路如图311所示。311通讯模块电路设计通讯模块包括JTAG接口和USART接口。JTAG接口用于系统开发环境与所开发系统之间的通讯,主要用于处理器的熔丝位设定、程序下载、系统调试等。USART0接口用于和上位机完通讯完成成现场数据采集和各种控制任务,控制器提供了

39、一种通信接口即RS232。在设计时,ATmega64的USART0121用于负责本RS232接口通信,电平转换芯片采用MAX232,具体接口电路设计如图312-313所示。JTAG接口同过仿真器与PC连接,JTAG接口图如图312所示:312硬件抗干扰的设计合格的硬件系统设计包括两个方面:系统功能的实现与良好的抗干扰能力。干扰不仅会使电子元器件性能降级或失效,使处理器工作失常;同时还可能使输入输出及控制信号发生偏移或严重失真,导致计量误差。系统的干扰信号主要来自以下几个方面:1)元器件布局不合理造成的干扰;2)数字地和模拟地的相互影响;3)寄生耦合;4)电磁干扰;5)静电干扰等。这些干扰使MC

40、U的检测值严重失真,直接影响系统整体系能。313本章小结本章根据系统提出的要求,提出了硬件电路总体设计方案,并详细描述了各硬件模块的电路实现。对影响系统的干扰进行了分析,给出了具体的抗干扰措施。设计的电路具有简单可靠成本低等特点。第四章系统的软件设计4.1 电动汽车的控制策略研究控制器是分工况对纯电动汽车进行实时控制的。纯电动汽车的行驶工况分为以下五种:1启动。2匀速行驶。3加速行驶。4减速行驶。5制动。对不同的行驶工况采用不同的控制策略,这样不仅能改善纯电动汽车的响应方式,而且能优化控制效果。411再生制动控制策略1长下坡时的再生制动控制策略纯电动汽车行驶在下坡路况,当坡度角大于某一数值时,

41、电枢电流小于零,电机从电动运行状态过渡到再生制动状态,向蓄电池充电,再生制动所产生能量经功率变换器存储到纯电动汽车动力蓄电池中。坡度越大,回馈的能量越多。当坡度过大时,回馈电流将大于动力蓄电池最大允许充电电流,这种情况下必须对充电电流进行限制,此时采用再生制动和机械制动相结合的制动方式来保证动力蓄电池的安全充电及行车安全。2中轻度刹车时的再生制动策略中轻度刹车是车辆行驶过程中最常见的一种刹车。中轻度刹车时,若所需制动力小于动力蓄电池允许最大充电电流等效的制动力,机械能直接通过PWM变换器给蓄电池充电;若所需制动力大于动力蓄电池允许最大充电电流等效的制动力,则用最大允许充电电流向蓄电池充电,多余

42、部分能量由机械制动消耗。3急刹车时的再生制动策略当驾驶员在驾驶过程中遇到时紧急情况时会进行紧急刹车行为,此时考虑到行车的安全性,应使用机械制动迅速停车。412驱动控制策略在现代控制系统设计中,PID控制是应用最广泛的控制策略。PID算法不仅具有简单而固定的形式,而且在很宽的工作范围内都能保持较好的鲁棒性。然而常规PID控制器难以满足高精度、快响应的控制要求,常常不能有效克服负载、模型参数的大范围变化以及非线性因素的影响。模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能控制方法,它从行为上模拟人的模糊推理和决策过程。其最大的特点是将专家的经验和知识表示为语言控制规则,并用这些控

43、制规则去控制系统,这样它可以不依赖于被控制对象的精确数学模型,能够克服非线性因素的影响,对被控制对象的参数具有较强的鲁棒性。纯电动汽车在行驶过程中,环境的变化具有不可预知的特点,因此常规的PID控制算法在控制系统中较难取得满意的控制效果。所以,对速度的控制策略采用将PID控制和模糊控制相结合的方法一模糊自适应整定PID控制,即利用模糊控制规则在线对PID参数进行修改。【7】如图43所示: PID参数自整定的实现思想是先找出PID的三个参数与误差e和误差变化率eg之间的模糊关系,在运行中通过不断检测e和eg,再根据模糊控制原理来对三个参数进行在线修改,以满足不同e和ec时对控制器参数的不同要求,

44、而使被控对象有良好的动、静态性能。 确定系统中连续变量e,ec的变化范围,本系统中速度变化范围为(O-3000rmin)。那么速度误差e范围是(-3000,3000);而误差变化率ec的变化范围可以设定为(-5000,5000)。将e,ec的变化范围整定到模糊论域E=(-7,7)内:由此,可以得到速度误差及误差变化率的整定公式为(41),(42):e=7/3000e (4.1) ec=7/5000ec (4.2)这样就得到模糊量e,cc。在模糊论域内,将e和ec的语言变量定义为:NB=负大NM=负中NS=负小ZE=零PS=正小PM=正中PB=正大将e和ec量化为15个等级,分别为7,6,5,4,3,2,1,0,1,2,3,4,5,6,7。那么e和ec的论域为:e=-7,一6,一5,-4,一3,一2,-l,0,1,2,3,4,5,6,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服