1、青海大学成人教育学院毕业论文:瀑布沟水电站厂房的初步设计目 录前 言3内 容 提 要41.瀑布沟水电站工程概况51.1概 述51.2.瀑布沟水电站的作用51.3.基本工程资料52.水电站主要设备的选择62.1.轮机的选择62.2.发电机的选择92.3.调速器的选择112.4.吊车的选择132.5.变压器的选择133.厂房的布置设计133.1.确定厂房的平面尺寸133.2. 确定厂房各高程174.电站枢纽布置设计175.引水系统设计185.1.进水口的设计185.2.引水道的设计195.3.尾水洞断面尺寸设计195.4调压室的结构尺寸计算195.5.无压尾水隧洞的结构尺寸计算196压力管道的结构
2、计算217主厂房内部的设备及其布置218副厂房的布置229参考文献2410致谢25附件1 瀑布沟水电站厂房设计图纸前 言 本次毕业设计开始于1月1号,到4月20号结束,历时三个多月。,指导老师为潘起来老师。本组的设计任务主要为地下式电站厂房的设计,其中包括水电站主要设备的选择、电站枢纽布置设计、厂房布置设计、引水系统设计以及地下厂房开挖稳定分析的简单计算。通过本次设计,培养了我们综合利用所学理论知识和设计技能解决实际问题的能力,是对我们所学知识的一次全面训练和提高。在设计过程中,潘起来老师给了我们很大的帮助,尽管他自己的工作很忙,总是尽可能的抽出时间来悉心指导我们,帮我们解决了许多设计难题,我
3、在此表示万分感谢。同时,其他组的指导老师以及同学也给了我们很多的帮助。我们在设计中,也充分发挥了自己的所学,期间查阅了许多工程书籍,以及参照了许多国内已建水电工程,这大大开阔了我们的设计视野,有效的提高了我们独立分析问题和解决问题的能力。本次毕业设计成果为:设计说明书一份、设计CAD图。由于是初次设计实际工程,有些地方思路不是很清晰,出错是在所难免的,请老师批评指正,谢谢!内容提要这次我的毕业设计是瀑布沟水电站厂房的初步设计,其主要内容由以下五大块组成:1.水电站主要设备的选择:包括水轮机、蜗壳、尾水管、发电机、调速器、厂房起重设备及主变压器等;2.水电站引水系统的设计:包括厂房枢纽型式的选择
4、、引水建筑物的组成、尾水系统的布置等;3.调节保证计算:包括调压室的设计、机组关闭时间的确定等;4.厂房设计:包括厂房尺寸的确定、厂内设备及其布置、副厂房的结构布置;5.压力管道的结构设计:包括压力管道钢衬厚度的计算、钢衬的抗外压失稳计算。该说明书是毕业设计的一部分,主要用来说明设计依据,具体的设计结果详见设计计算书。 第一章.瀑布沟水电站工程概况一 概述瀑布沟水电站位于长江流域岷江水系的大渡河中游,地处四川省西部汉源和甘洛两省境内。电站采用堤坝式开发,是一座以发电为主,兼有防洪、拦沙等综合利用效益的大型水电工程。瀑布沟电站系从下游算起的第5级,装机规模330万KW,保证出力92.6万KW,多
5、年平均发电量145.8亿KW/h。电站额定水头148m,单机引用流量417m3/s。电站拦河大坝为砾石土直心墙堆石坝,水库正常蓄水位850.00m,汛期运行限制水位841.00m,死水位790.00m,水库库容53.9亿m3,其中调洪库容10.56亿m3、调节库容38.82亿m3,为季调节水库。二 瀑布沟水电站的作用1 综合作用:本电站是以发电为主,兼有防洪、拦沙等综合利用任务的工程。由于具有较大库容,可调节流量,拦截泥沙,对下游水电站有较大效益。2发电:本电站装机容量330万KW,保证出力92.6万KW,多年平均发电量145.8亿KW/h。由于水库调节,提高枯水期下泄流量,下游龚嘴和铜街子两
6、电站将增加保证出力21.5万KW,枯水期电量7.8亿KW/h。3 漂木:利用河道漂木送木材是大渡河流域木材运输的主要形式。水库形成后,将木材在库内收漂,拖运至坝前,从木材联合运输机过坝,年过木量100万m3。4 防洪:水库预留一定的防洪库容,通过洪水期水库调节,可削减下泄洪峰流量,使下游乐山市沙湾区40余个江心洲(居民3万多人)的防洪标准从不足2年一遇提高到5年一遇,同时提高了下游2个已建电站的防洪标准。5 拦沙:瀑布沟坝址悬移质年输沙量占龚嘴水库年输沙量的85.3%,瀑布沟水库运行50年,泥沙出库率仅12.3%,能有效的解决龚嘴和铜街子两电站因水库泥沙淤积对电站安全运行的影响,缓解龚嘴水库淤
7、积对成昆铁路安全运营的威胁。6 航运:大渡河下段沙湾以下为通航河段。瀑布沟水库调节后,汛期下泄流量减少,枯水期下泄流量增加250300 m3/s,改善下游航运条件。三基本工程资料1水库水位:校核洪水位851.32 m3/s 设计洪水位847.63 m3/s正常蓄水位850.00 m3/s 汛期限制水位841.00 m3/s死水位790.00 m3/s2下游尾水位:校核洪水尾水位679.84 m3/s 设计洪水尾水位678.90 m3/s正常尾水位669.80 m3/s 最低尾水位667.60 m3/s3机组工作水头:最大工作水头181.70 m3/s 最小工作水头114.30 m3/s额定工作
8、水头148.00 m3/s 第二章 水电站主要设备的选择一.水轮机的选择1 水轮机型号的选择由设计资料可以知道,该水轮机最大工作水头Hmax=181.7m,最小工作水头Hmin=114.3m,额定工作水头Hr=148m。混流式水轮机结构简单,运行稳定,效率高,应运广泛,切适用水头在30700m,故优先选择混流式水轮机。查混流式水轮机模型转轮主要参数表,初步选定HL200,HL180两种型号。在最优工况下效率分别为:200=90.7%、180=92.0%;汽蚀系数:200 =0.088、180=0.075。所以选用HL180 水轮机。2转轮直径的计算其中:水轮机的额定出力,可由发电机的额定出力(
9、即机组容量)求得。即 为发电机效率,对于大中型发电机取=9698%。水轮机的单位流量,在水轮机以额定出力工作时,应选用在限制工况下的值进行计算,可以由水轮机模型转轮主要参数表中查得。水轮机的设计水头。原型水轮机在限制工况下的效率,由于转轮直径尚未求得,效率修正值也不能计算,所以得不出确切的值。计算时可根据经验初步假定(一般为限制工况下的增加2%3%),待求得后再作校核。将以上各值代入(2-1)式中便可计算出转轮直径,该直径尚须按规定的系列尺寸选用相近而偏大的标准直径, 选用与之接近而偏大的标准直径D1=6.5m。3 水轮机转速的计算在原型水轮机的最高效率的情况下:考虑到制造工艺水平的情况,取1
10、=1%;由于水轮机所应用的蜗壳和尾水管的型式与模型基本相似,故认为2=0,则效率修正值:式中 考虑工艺水平影响的效率修正值; 考虑异形部件影响的效率修正值。由此便可得出水轮机在限制工况下的效率为 (2-3)式中 模型水轮机在限制工况下的效率,可查水轮机模型转轮主要参数表得到。由上式计算出的效率应和前面式2-1假定的效率相同否则应将该值带入计算。为了使水轮机在加权平均水头下有最高的效率,上式中的单位转速应采用最优单位转速;水头应采用加权平均水头。由此可将上式改写为 式中 原型水轮机的最优单位转速,同样,计算得的转速亦需按规定选用相近的发电机标准同步转速,并使其略大于计算得的转速,这样可使发电机具
11、有较小的尺寸和重量。最终选用与之接近的标准同步转速4工作范围的验算在选定,的情况下,=0.86m3/s。水轮机的和各种特征水头下相应的值分别由计算得出:则水轮机的最大引用流量Qmax为:对值在各水头下的计算公式如下:按水轮机的最大水头、最小水头,以及所选定的直径、转速计算出单位转速和;按设计水头和所选定的直径计算出水轮机以额定出力工作时的最大单位流量。然后在水轮机主要综合特性曲线图上分别作以、和为常数的直线,这些直线所包括的范围即给出了水轮机的相似工作范围,若此范围包括了主要综合特性曲线的高效率区时并在5%出力限制线以左时,则认为所选定的和是满意的,否则应适当调整或的数值。对值在设计水头=14
12、8m时在最大水头Hmax=181.7m时在最小水头Hmin=114.3m时在HL180水轮机的模型综合特性曲线图上,分别画出=820L/min、=60.3、=76.0的直线,在图上我们可以看到这些直线所标出的水轮机相似工作范围基本上包括了特性曲线的高效率区,所以对所选定的直径D1=6.5m,n=125还是比较满意的。5水轮机的吸出高Hs的计算由水轮机的设计工况查HL180水轮机的模型综合特性曲线,查的相应的汽蚀系数=0.08;由设计水头Hr=148m,查汽蚀系数修正曲线图可的=0.018,则可求的水轮机的吸出高Hs为:为水轮机安装处的海拔高程,w为下游最低水位668.68m。则水轮机的安装高程
13、为:6绘制运转特性曲线,并校核论证机组的工作稳定性水轮机型号: HL180-LJ-650;特征水头: Hmax=181.7m,Hmin=114.3m,Hr=148m;水轮机的额定出力: =56万KW;水轮机安装高程: T=664m。当水头一定时,对应于模型水轮机的为一常数,在相应的主要综合特性曲线上作为常数的平线,它与个等效率曲线相交于许多点,记取各点上的和值,便可求得各点相应的 HL180水轮机等效率曲线计算表H=160.0m=64.2=8.3883820.4284.3359.4820.4384.3304.1840.4686.3403.0840.4686.3333.0860.588.3448
14、.2860.588.3370.3880.5390.3485.8880.5590.3416.6900.5892.3543.5900.5892.3449.1910.6293.3587.2910.6293.3485.2910.7993.3748.2910.893.3626.1900.8192.3759.0900.8392.3642.6880.8690.3788.3880.8890.3666.6860.8988.3797.8860.9188.3674.0840.9286.3806.0840.9486.3680.5820.9584.3813.0820.9784.3685.9800.9882.3818.8
15、800.9982.3683.5780.9980.3807.0781.0180.3680.35%出力限制线上的点7计算设备重量估算水轮机总重:K、b是与水头有关的系数,a是与转轮直径有关的系数,其中K=8.1、b=0.16、,转轮直径D1=6.5m,额定工作水头Hr=148m。转轮重量:金属蜗壳重量: ,为一个只与符号有关的系数。以上估算公式都是经验公式,于实际情况还是有很大的出入,故需要多参照类似工程,以得到较为精确的值。二 发电机的选择1发电机的技术特征:由初始资料可知发电机的额定容量为612000KVA/55万KW,功率因数为0.9,电压等级推荐使用18KW,定额频率为50HZ,额定转速n
16、=125150初步选定伞式发电机。该型式的发电机机组高度小,重量较轻。材料消耗较少;但其运行稳定型较差,推力轴承损耗较大,安装维修较困难。磁极对数: 极距 : Sf为发电机的额定容量(KVA) Kj系数,一般为810,容量大取上限,则取Kj=10。定子内径: 定子铁芯长度: C 机械常数,对大容量发电机可取C=20*104N 发电机容量(MW)定子铁芯外径:当n166.7时,=1625.0+1.2*106.3=1752.56(cm) 飞逸转速:=1.8*125=225 k对混流式水轮机取1.82.3,则取1.8。 故最终选定半伞式发电机SF55048/1760,采用全空冷的冷却方式。额定电压的
17、选定:一般情况下,从发电机的经济指标来看,希望采用额定电压较低的方案,这样可使发电机消耗的绝缘材料和有效材料相应减少,但这样又会使绕组接线和母线用铜量相应增加,因此一般希望采用较高一级的电压。由发电机的额定容量N=560MW,选择推荐额定电压为=18KV。额定功率因数cos的选定:发电机额定功率系数的大小影响发电机的尺寸和可能提高的电势数值。发电机的额定功率因数减小,无功电流增大,发电机的电势相应提高,发电机的功率极限就相应提高,也就提高了发电机的稳定运行水平,同时在水轮机超过设计水头运行时可获得多发电能的效益。但另一方面,在发电机的额定有功功率一定时,减小功率系数就增大了发电机的容量,因而增
18、大了发电机的尺寸和材料消耗,发电机的总重量也相应增加。由机组的容量,选择发电机的额定功率系数为cos=0.92发电机尺寸估算:1) 定子机座外径D1由于 取 则 取值范围为:()(mm)由于该发电机属低速大容量发电机 取=19.3m2) 风洞内径D2时 取值范围为 对于低速大容量发电机取为22.0m3) 转子直径D3 在初步设计阶段,转子直径可近似等于定子铁芯内径,忽略气隙宽4) 下机架跨距D4由 为水轮机坑内径,与水轮机转轮直径有关,取为9.0m ,取为10.0m5) 推力轴承装置直径D6:40005000之间,初步设计取4.0m6) 励磁机外径D7:36004800之间,初步设计取3.6m
19、7) 定子机座高度h1时 =5.42+2.51.06=8.07m 取8) 上机架高度h2对伞式不承载机架发电机外形尺寸图9)推力轴承高度h3, 初步设计取2.0m10) 定子机座支承面到下机架支承面或到下挡风板的距离h8对于伞式承载机架11) 下机架支承面到大轴法兰盘面的距离h9,12) 定子支承面到大轴法兰盘面的距离h10,取6.4m13) 定子机座支承面到发电机顶部高度h1414) 发电机大轴高,初步设计取12m。15) 发电机总高H3设备重量估算: 发 电 机 总 重:为发电机重量系数,取=27。 发电机转子连轴重: 上 支 架 重: 下 支 架 重: 发 电 机 定子重:以上估算公式都
20、是经验公式,于实际情况还是有很大的出入,故需要多参照类似工程,以得到较为准确的值。三调速器的选择1调速功的计算水轮机的调速功为:属于大型调速器,则接力器、调速柜和油压装置要分别进行计算和选择。式中:A调速功(J); 最大水头(m);Q最大水头下额定出力时的流量(),其工作时的效率为水轮机转轮直径(m)。2接力器的选择对大型调速器优先采用两个接力器来操作导水机构,每个接力器的直径可按下列经验公式计算:式中 计算系数,可由水力机械表5-3查得; 调速系统的额定油压(kg/cm2);通过计算取为4.0MPa 导叶高度(m); 水轮机转轮直径(m);由上式计算得到值,便可在标准接力器系列表中选择相邻较
21、大的直径。接力器最大行程(mm)可由下列经验公式求得:=(1.41.8) (mm)式中 导叶最大开度(mm)。可由模型水轮机的导叶最大开度依下式换算求得:、分别为原型和模型水轮机导叶轴心圆的直径;、分别为原型和模型水轮机的导叶数目。将所求得到的的单位转化为m,则可求得两个接力器的总容积为:(m3)3调速器的选择:大型调速器的型号是以主配压阀的直径来表征的,主配压阀的直径可由下式计算: 导叶从全开到全关的直线关闭时间管内油的流速由此选择与之相邻的DT20040型号的电器液压型调速器。4 油压装置的选择:此处油压装置不考空放阀和进水阀的用油,则压力油罐的容积按下式估算:由此选定与之相邻的YZ20/
22、240型分离式油压装置。四吊车的选择起重机允许起吊的最大重量(包括平衡梁和吊具)称为额定起重量。起重机的额定起重量,应根据最重吊运件的重量(一般为发电机转子带轴)加起吊工具的重量(包括平衡梁和专用吊具)。1 具有上部结构的厂房一般选用桥式起重机。在水电站中,双小车桥式起重机比单小车桥式起重机耗钢量小,能降低厂房上部高度,对地下式或坝内式厂房比较有利,故选用双小车桥式起重机。2 初步估计厂内最大和最重的部件为发电机转子连轴 发电机转子连轴重: 故选用与之接近而偏大的2*400双小车桥式起重机。五变压器的选择主变压器的容量一般取发电机容量的30,参照类似工程经验,采用DPS20400/500型号的
23、主变压器。(单相,强迫油循环水冷,三卷,额定容量204000KVA和升压电压500KV的变压器),尺寸:长*宽*高(mm)8520*4650*7150,吊出铁芯高11000mm。第三章厂房的布置设计一确定厂房的平面尺1计算尾水管和蜗壳的形式及尺寸 当水轮机的最大工作水头在40m以上时,蜗壳通常采用金属蜗壳, 这种蜗壳多适用于中高水头的混流式水轮机。为改善蜗壳的受力条件及过流条件,采用圆形断面。蜗壳主要参数的选择:蜗壳的包角 :对圆断面的金属蜗壳,由于它过流量较小,蜗壳采用的外形尺寸对水电站的尺寸和造价影响不大,应此为获得良好的水力性能,大都采用3450。蜗壳座环的形式的各尺寸可以查金属蜗壳座环
24、尺寸系列表。在蜗壳末端由于断面过小而不能和蝶形边相切,因此采用椭圆断面。一般希望将蜗壳进口断面平均流速取的大些,这样可以得到较小的蜗壳尺寸,但这样却使水力损失增大,因此合理的选择进口平均流速是很重要的。蜗壳进口断面平均流速查蜗壳进口断面的平均流速曲线图可得到。蜗壳得水力计算:a蜗壳的进口断面: 断面的面积: 断面的半径: 从轴中心线到蜗壳外缘的半径:b对于蜗壳中间任意断面: 式中 座环外半径 从蜗壳鼻端起算至计算断面的角度 分别为计算断面处的流量、断面半径及边缘半径。蜗壳外形尺寸图 (单位:米)蜗壳中间任意断面水力计算表345400.23.4512.00300348.03.2211.54255
25、295.82.9711.04210243.62.7010.49165191.42.399.88120139.22.049.187587.01.618.323034.81.027.141517.40.726.54尾水管的主要形式及其主要尺寸的确定:对大型水轮机,为了减少尾水管的开挖深度,均都采用弯肘形尾水管。初步选定标准混凝土肘管。其尺寸如下表所示:12.64.52.721.351.350.6751.821.226.516.929.2517.688.7758.7754.387511.837.93锥管的单边扩散角,对混流式水轮机可取=。为减小厂房基础的岩石开挖,可将尾水管的出口扩散段向上倾斜。中间
26、支墩。 尾水管尺寸示意图(单位:米)2.确定机组的宽度和厂房的宽度机组段宽度的确定: 机组段+X方向的最大长度; 机组段-X方向的最大长度.下面分别计算蜗壳层、尾水管层、发电机层,最后取三者间的最大值。蜗壳层: ,-蜗壳外部混凝土厚度尾水管层:= =B尾水管的宽度 尾水管的混凝土边墩厚度发电机层: 发电机风罩内径 发电机风罩壁厚两台机组之间风罩外壁净距故初步确定机组段长度L130m。端机组长度的确定: 为附加长度主厂房宽度的确定: mA风罩外壁至上游墙内侧的净距发电机风罩壁厚发电机风罩内径蜗壳外部混凝土厚度3确定安装厂的平面尺寸 安装厂的宽度与主机室宽度相等;安装厂的长度一般为机组段长度的11
27、.5倍,考虑安装厂要布置上机架,发电机转子带轴,水轮机转子带轴和水轮机顶盖。故初步设计取。二确定厂房各高程1水轮机安装高程:水轮机安装高程是一个控制性的高程,它取决于水轮机的机型、允许吸出高度和电站建成后厂房的下游最低水位。前面计算得2主厂房基础开挖高程:h2,h3见尾水管尺寸表;h1为尾水管底部混凝土衬砌3水轮机层地面高程: ,其中为蜗壳外包混凝土4发电机装置高程: h5发电机机墩进人孔高度 h6进人孔顶部混凝土厚度(考虑发电机的安装)。5发电机楼板高程: h发电机安装坑深度6起重机的安装高程: h7上机架的高度h8吊运部件与固定的机组或设备的垂直净距h10吊运部件与吊钩间的距离h11主钩最
28、高位置到轨顶距离h9最大吊运部件得高度7屋顶高程(顶拱之下): h12小车高度 h13检修空间第四章电站枢纽布置设计枢纽的初步设计布置:挡水建筑物为直心墙土石坝,布置在主河道上,轴线方向;地下厂房深埋于左岸山体内,埋深220360m,距河边约400m,厂区围岩多数为质量好的,类花岗岩体,厂房纵轴方向;进厂交通采用公路隧洞,直接于乌斯河镇相接;在主厂房的下游平行布置主变和尾水闸门室,开关站设于地下厂房顶部的山坡上,高程约910m。在尾水闸门室后面设2条无压尾水隧洞,其轴线于厂房纵轴方向垂直;岸边溢洪道布置在左岸较平缓的地方,大致平行于河道,在河道于厂房中间位置。详细布置见大图。第五章引水系统设计
29、引水建筑物的功用是集中落差,形成水头,并将符合水质要求的以及有一定数量的水引向水力发电机组,还将发电后的水流排向下游。引水建筑物可分为无压引水及有压引水两大类。这里采用有压引水建筑物,采用压力钢管。一进水口的设计:选择和设计进水口的形式,确定尺寸及高程,并选择启闭设备。在坝址左岸山体雄厚,自然边坡坡形较为完整,参照溪落渡工程,采用岸塔式进水口。1.估算不出现吸气漩涡的临界淹没深度: H闸门孔口净高V闸门断面水流速度C经验系数S闸门顶低于最低水位的临界淹没深度2.估算有压进水口的轮廓尺寸:a进口段:连接拦污栅与闸门段,隧洞为平底,两侧收缩曲线为四分之一圆弧,上唇收缩曲线为四分之一椭圆,椭圆的曲线
30、方程为: 式中a可取闸门处的孔口高度H,b可以取H3b闸门段:闸门段设计成矩形,设置检修闸门和快速事故闸门各一道,尺寸相等。其中门宽B等于隧洞直径,门高H略大于门宽。c渐变段:采用圆角过渡,圆角半径可按直线规律变为隧洞半径R。渐变段的长度取隧洞直径的2倍,侧面扩散角取。3.有压进水口的主要设备的选择:a拦污栅的布置:为便于过水和清污,采用垂直的立面布置和平面的形状。拦污栅与进水口的距离不小于洞径,则初步设计时取10m。b闸门及启闭设备的选定:主要参照一些类似工程,以及一些工程经验,初步估计闸门重量,以及尺寸,尽量要求型号种类少,一机多用。C通气孔:其作用主要是,当引水道充水时用以排气,当事故闸
31、门关闭放空引水道时用以进气以防出现有害的真空。由于这里闸门设置为后止水,必须设置专用的通气孔。通气孔的面积取决于事故闸门紧急事故关闭时的进气量,此进气量一般取此进水口的最大引用量。设在有压进水口的事故闸门之后,其面积为: 空气进气量,采用引水道最大引用流量允许进气流量,隧洞中一般取7080m/s。二引水道的设计 发电机为单机单管供水,选其中最长的一条引水管道计算。管道直径可靠下式初步估算:恒定流计算主要为了确定管道的水头损失。管道的水头损失对于水电站装机容量的选择、电能的计算、管径的确定等都是必不可少的。水头损失包括摩阻损失和局部损失两种。1)沿程损失管道中的沿程损失与水流形态有关。对于水电站
32、的压力水管,水流一般处于紊流状态,沿程损失利用曼宁公式计算。2)局部水头损失局部水头损失发生在进口、门槽、弯段、变径段、分岔等处,具体的计算公式参见水力学。沿程损失和局部水头损失之和就是总水头损失。在本设计恒定流计算中以调压室为界,分别计算调压室以前引水道的水头损失和调压室以后尾水道的水头损失。计算过程见计算书。计算书分别计算在设计水头H0下, 、时在丢弃全负荷和增加全负荷两种工况下的最大转速升高,最大压力升高和尾水管最大真空度。在计算中选择了最长管线进行计算。详细计算过程见计算书。三.尾水洞断面尺寸设计:尾水洞断面采用圆形断面,根据规范取尾水隧洞经济流速为。尾水洞采用三机一洞,对于三机一洞的
33、尾水隧洞其经济直径为:四调压室的结构尺寸计算对于尾水调压室,调压室水位波动稳定的条件是:尾水隧洞的长度尾水隧洞的断面积尾水隧洞的阻力系数最小静水头;最小工作水头按工程经验,一般取调压室的涌浪计算a.调压室最低水位计算:采用圆筒式调压室,则认为阻抗系数,公式简化为: ,其中, 。调压室最低涌浪水位为: 。b丢弃全负荷后波动第二振幅计算c调压室最高水位计算:对的圆筒式调压室,按照Vogt公式计算:当增加全负荷时,则公式简化为:,其中由初步设计可以知道,尾水管的底板高程为645.1m,而调压室的底面高程至少在639.02m以下,况且调压室下面还要布置一个管径20m尾水隧洞,说明该水电站不适合设调压室
34、。故修改初步设计,参照类似工程,采用无压尾水隧洞。五.无压尾水隧洞的结构尺寸计算尾水洞断面采用城门洞形断面,根据规范取尾水隧洞经济流速为。尾水洞采用三机一洞,则。主要设计依据是任何时候要保持其水流为无压的,故其洞高一定要大于下游校核洪水位。具体尺寸详见计算书。第六章压力管道的结构计算在设计中进行压力管道的结构计算。在计算中取压力钢管与蜗壳连接开始渐变前的断面进行计算,因为此处为全管压力变化最大的地方,按照地下埋管来计算。压力钢管的结构计算包括:地下埋管承受内压分析:主要确定压力钢管的钢衬厚度;和地下埋管的抗外压失稳:计算压力钢管的临界压力。计算过程见计算书。第七章主厂房内部的设备及其布置1.
35、发电机层的布置1)发电机布置为上机架埋入式,这样使发电机层宽敞,同时由于提高了发电机层高程而增加了水轮机层高度。2)发电机布置在发电机层中心线上,机组左边布置机旁盘,调速器以及油压装置。3)机旁盘包括机组自动操作盘、机组继电保护盘、机组测温盘、机组动力盘等,每台机组的机旁盘布置为6块。布置在发电机层左边,盘后离墙壁留有2米的检修过道,盘前留有足够大的空地便于运行人员巡视操作。4)发电机层平面布置在吊钩工作范围线内设供安装检修必需的吊物孔,以沟通上下层之间的运输。这里每台机组设一个吊物孔,这样当一台机组检修时不致影响相邻机组的正常运行。吊物孔布置在发电机层上游面一侧,平时用铁盖板盖住。2.安装间
36、的布置1)安装间是主厂房的一部分,位置设在主厂房的右端。安装间与对外交通洞相连,交通洞尺寸为:高15米,宽15米。2)安装间除要考虑检修发电机以外,还要考虑检修变压器以及安放平衡梁的位置,安装间宽度与主厂房相同为28.6米,长度确定为55米。3.安装间底层的布置安装间的下面有一层空间利用可作为辅助生产房间即:油罐室、油处理室、空压机室、气罐室。辅助生产房间的面积取决于电站规模以及电站在系统中的作用。布置应尽量集中紧凑,靠近主机,缩短管道,减少损失,做到系统性强,便于集中操作、管理和维修,并能适应分期安装、分批投产的要求。1)油罐室和油处理室水电站的用油包括主变压器的绝缘油和机组的透平油。油库和
37、油处理室应考虑防火防爆的要求。一个油系统从进油、贮油、用油到废油的回收贮存处理,其设备包括有油泵、油管、压滤机、分离机、补给油罐和污油罐等。这些设备的布置要紧凑,便于管理并安全可靠。油处理室的位置应布置靠近油库及用油对象、尽量缩短距离,并能设计成自流排油方式。根据以上原则油处理室和油罐室布置在一起,尺寸设定为:2024米。2)气罐室和空压机室水电站的压气机室供给的压缩空气主要用于机组制动、空气开关、设备吹扫、风割风焊、风动工具等。主要用气对象距离在250米以内,所以压气机室布置在厂内。空压机房设有压气机,由于压气机有较大的躁声和振动,空压机房避开怕震的设备和怕噪音的房间。气罐室是用来存放供气所
38、用气罐的,贮气罐应与厂内其他设备隔离,与墙壁的间距应不小于0.51.0米。根据以上原则气罐室和空压机室布置在一起,尺寸设定为:2020米。4.水轮机层的布置发电机机墩是在机组部位支承水轮发电机定子支座的发电机机座,内腔称为机坑、定子坑或水轮机井。对于大型机组机墩采用圆筒式机墩,机墩内布置接力器坑用来布置接力器。机墩留有进人孔高度为2米,宽度为2米。5.蜗壳层的布置1)蜗壳层除去蜗壳过水部分外,均为大体积的混凝土,布置较为简单。该水电站采用单机单管供水,所以不须布置闸阀。2)蜗壳层混凝土内布置尾水管的进人孔,用以检修尾水管用,尺寸设定为:宽2米,高2米。3)尾水管周围混凝土内设置操作廊道和排水廊
39、道,廊道尺寸为2米高3米宽,采用城门洞形。6.伸缩缝布置水电站厂房为防止地基不均匀沉降,以及减少下部结构受基础约束产生的温度和干缩应力,必须沿厂房长度方向(纵向)设置永久的温度伸缩缝。由于这里厂房基础为岩基,由于基础约束应力较大,这里采用每台机组设一条永久伸缩缝,缝自基础通到厂顶,布置在两台机组之间,永久缝宽取为2厘米。7.楼梯的设置 各层间的楼梯布置相同,单层楼梯长1.2m、宽0.3m、高0.2m,倾角为25o30o之间。8.吊物孔及吊阀孔的设置对于发电机层每台机组设一个吊物孔,这样当一台机组检修时不致影响相邻机组的正常运行,平时用铁盖板盖住。吊物孔布置在发电机层上游面一侧,尺寸为3.03.
40、0m2;吊阀孔布置在发电机层下游面一侧,尺寸为1.81.8 m2。第八章副厂房的布置 1.中央控制室 中控室是电站的神经中枢,是整个电站运行、控制、监护的中心。中控室布置在副厂房内高度定为45米,最终确定为5m。中控室面积作如下估算:大体上等于(2035)m2机组台数,初步设计面积为180m2。中控室要求尽量与发电机层接近以节省电缆,故布置在于发电机同高程的位置。2.集缆室 集缆室就是中控室下层,又称电缆夹层,面积大于或等于中控室面积,直接位于中控室之下,净高等于2.53米,面积初步估计为216 m2。其他用房面积见大图。参考文献:水力机械,水利电力出版社,金钟元主编水电站建筑物,武汉水利水电
41、学院主编水电站机电设计手册(水力机械、电气一次),水电站机电设计手册编写组主编水电站厂房设计,水利电力出版社,顾鹏飞、喻远光主编水电站动力设备设计手册,河海大学骆如蕴主编水轮机设计手册,哈机研主编水电站,黄河水利委员会主编水电站建筑物设计图册,清华大学主编水工建筑物,武汉水利水电学院主编地下厂房设计规范,武汉水利水电学院主编水电站工程图集,武汉水利水电学院水电站教研室主编致谢本设计的完成得到了我的指导老师潘起来教授的悉心指导和亲切的关怀,从项目的选题,到设计和计算的整个阶段,潘教授对设计的方向和方法都提出了很多宝贵的意见和建议。他渊博的学识和丰富的经验给了我很多帮助,为我的设计提供了很好的素材。在完成设计期间,他一直都在各个方面对我们高标准、严要求,不仅让我们学到了科学知识,而且还教给了我们许多实践经验和做人的道理,所有这些都会让我在将来的工作和生活中受益无穷。他循循善诱的教导和不拘一格的思路给予我无尽的启迪。在此,特向潘教授表达我衷心的感谢。 在此,也感
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100