ImageVerifierCode 换一换
格式:PPTX , 页数:27 ,大小:1.53MB ,
资源ID:4823068      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4823068.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(公开课211合情推理——归纳推理.pptx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

公开课211合情推理——归纳推理.pptx

1、福福尔尔摩摩斯斯柯南柯南4.北军不善水战1.今夜恰有大雾2.曹操生性多疑3.弓弩利于远战草船借箭必将成功我们来推测诸葛亮“先生”的推理过程:根据一个或几个已知的判断来确定一个新的判断的思维过程就叫推理推理.已知已知判断判断前提新的新的判断判断结论2.2.由三角形内角和为由三角形内角和为 ,凸四边形内角和为凸四边形内角和为 ,凸五边形内角和为凸五边形内角和为 ,1.1.由铜、铁、铝、金、银等金属都能导电,由铜、铁、铝、金、银等金属都能导电,3.3.地球上有生命,火星具有一些与地球类地球上有生命,火星具有一些与地球类似的特征,似的特征,4.4.因为所有人都会死,苏格拉底是人,因为所有人都会死,苏格

2、拉底是人,猜想猜想:一切金属都能导电一切金属都能导电.猜想猜想:凸凸n n边形内角和为边形内角和为 猜想猜想:火星上也有生命火星上也有生命.所以苏格拉底会死所以苏格拉底会死.归归纳纳推推理理类比类比推理推理合合情情推推理理演绎演绎推理推理2.1.12.1.1合情推理合情推理归纳推理归纳推理铜能导电铜能导电铝能导电铝能导电金能导电金能导电银能导电银能导电一切金属一切金属都能导电都能导电.三角形内角和三角形内角和为为凸四边形内角凸四边形内角和为和为凸五边形内角凸五边形内角和为和为 凸凸n边形边形内角和为内角和为第一个数为第一个数为2第二个数为第二个数为4第三个数为第三个数为6第四个数为第四个数为8

3、第第n个个数为数为2n.部分部分个别个别蛇类是用肺呼吸的鳄鱼是用肺呼吸的海龟是用肺呼吸的蜥蜴是用肺呼吸的爬行动物都是用肺呼吸的整整 体体一一 般般 由某类事物的由某类事物的 具有某些特征具有某些特征,推出推出该类事物的该类事物的 都具有这些特征的推理都具有这些特征的推理,或或者由者由 概括出概括出 的推理的推理,称为称为归纳归纳推理推理(简称归纳简称归纳).).部分对象部分对象全部对象全部对象个别事实个别事实一般结论一般结论 由某类事物的由某类事物的 具有某些特征具有某些特征,推出推出该类事物的该类事物的 都具有这些特征的推理都具有这些特征的推理,或或者由者由 概括出概括出 的推理的推理,称为

4、称为归纳归纳推理推理(简称归纳简称归纳).).部分对象部分对象全部对象全部对象个别事实个别事实一般结论一般结论 你能举出归纳推理的例子吗?即是由部分到整体,由个别到一般的推理.观察观察下列等式下列等式3+7=103+7=10,3+17=203+17=20,13+17=3013+17=30,归纳出归纳出一个规律:一个规律:偶数偶数=奇质数奇质数+奇质数奇质数 通过更多特例的检验,从6开始,没有出现反例.大胆猜想:任何一个不小于6的偶数都等于两个奇质数的和.10=3+710=3+7,20=3+1720=3+17,30=13+17.30=13+17.陈氏定理陈氏定理应用归纳推理可以应用归纳推理可以发

5、现新事实发现新事实,获得新结论获得新结论!歌德巴赫猜想四色定理牛顿发现万有引力门捷列夫发现元素周期律等等1.1.对于数列对于数列1,3,5,7,1,3,5,7,由此你猜想出第由此你猜想出第 个数是个数是_._.2.观察右图,可以发现:_.1=12,1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,(第2题)思考题组一思考题组一:3.对任意的正整数 ,猜想 与 的大小关系.一种有趣且有很长历史的数叫费马素数,这些数是由法国数学家费马在研究数列的前五项:发现它们都是素数,于是费马就猜想:形如 的数都是素数。费马素数猜想 否定一个猜想只需举出一个反例

6、即可!一个错误的猜想 另外,德国数学家希尔伯特1900年在巴黎提出的著名的“希尔伯特23个问题”。有的尚未解决,但却极大地促进了数学这门学科的发展和健全.实验观察实验观察大胆猜想大胆猜想验证猜想验证猜想归纳推理的过程:归纳推理的过程:(1)从特殊到一般;从特殊到一般;归纳推理的特点归纳推理的特点:合情推理是冒险的,合情推理是冒险的,有争议的和暂时的有争议的和暂时的波利亚波利亚(3)具有或然性。具有或然性。(2)具有创造性;具有创造性;1.已知数列已知数列 的第一项的第一项 =1,且且 (1,2,3,),请归纳出这个数列的通项公式为请归纳出这个数列的通项公式为_.思考题组二思考题组二:任取两条平

7、行线任取两条平行线 ,在直线在直线 上任取三个点依上任取三个点依次记作次记作 ,在直线在直线 上任取三个点依次记作上任取三个点依次记作 .连接连接 ,记交点为,记交点为 ;连接连接 ,记交点为记交点为 ;连接连接 ,记交点为记交点为 .你能发现什么规律呢你能发现什么规律呢?2.2.传说在古老的印度有一座神庙,神庙中有三根针和套在一传说在古老的印度有一座神庙,神庙中有三根针和套在一传说在古老的印度有一座神庙,神庙中有三根针和套在一传说在古老的印度有一座神庙,神庙中有三根针和套在一根针上的根针上的根针上的根针上的64646464个圆环个圆环个圆环个圆环.古印度的天神指示他的僧侣们按下列规则古印度的

8、天神指示他的僧侣们按下列规则古印度的天神指示他的僧侣们按下列规则古印度的天神指示他的僧侣们按下列规则,把圆环从一根针上全部移到另一根针上,第三根针起把圆环从一根针上全部移到另一根针上,第三根针起把圆环从一根针上全部移到另一根针上,第三根针起把圆环从一根针上全部移到另一根针上,第三根针起“过渡过渡过渡过渡”的作用的作用的作用的作用.1.1.1.1.每次只能移动每次只能移动每次只能移动每次只能移动1 1 1 1个圆环;个圆环;个圆环;个圆环;2.2.2.2.较大的圆环不能放在较小的圆环上面较大的圆环不能放在较小的圆环上面较大的圆环不能放在较小的圆环上面较大的圆环不能放在较小的圆环上面.如果有一天,

9、僧侣们将这如果有一天,僧侣们将这如果有一天,僧侣们将这如果有一天,僧侣们将这64646464个圆环全部移到另一根针上,个圆环全部移到另一根针上,个圆环全部移到另一根针上,个圆环全部移到另一根针上,那么世界末日就来临了那么世界末日就来临了那么世界末日就来临了那么世界末日就来临了.请你试着推测:把请你试着推测:把请你试着推测:把请你试着推测:把 个圆环从个圆环从个圆环从个圆环从1 1 1 1号针移到号针移到号针移到号针移到3 3 3 3号针号针号针号针,最少需要移最少需要移最少需要移最少需要移动多少次动多少次动多少次动多少次?1 12 23 3123第第第第1 1个圆环从个圆环从个圆环从个圆环从1

10、 1到到到到3 3.设设 为把为把 个圆环从个圆环从1号针移到号针移到3号针的最少次数,则号针的最少次数,则 1时,时,1 2时,时,123第第第第1 1个圆环从个圆环从个圆环从个圆环从1 1到到到到3 3.前前前前1 1个圆环从个圆环从个圆环从个圆环从1 1到到到到2 2;第第第第2 2个圆环从个圆环从个圆环从个圆环从1 1到到到到3 3;第第第第1 1个圆环从个圆环从个圆环从个圆环从2 2到到到到3 3.设设 为把为把 个圆环从个圆环从1号针移到号针移到3号针的最少次数,则号针的最少次数,则 1 1时,时,3 2时,时,3 1时,时,1 3时,时,123第第第第1 1个圆环从个圆环从个圆环

11、从个圆环从1 1到到到到3 3.前前前前1 1个圆环从个圆环从个圆环从个圆环从1 1到到到到2 2;第第第第2 2个圆环从个圆环从个圆环从个圆环从1 1到到到到3 3;前前前前1 1个圆环从个圆环从个圆环从个圆环从2 2到到到到3 3.前前前前2 2个圆环从个圆环从个圆环从个圆环从1 1到到到到2 2;第第第第3 3个圆环从个圆环从个圆环从个圆环从1 1到到到到3 3;前前前前2 2个圆环从个圆环从个圆环从个圆环从2 2到到到到3 3.设设 为把为把 个圆环从个圆环从1号针移到号针移到3号针的最少次数,则号针的最少次数,则 7根据以上分析,我们可得以下递推公式从这个递推公式出发,可以证明上述通项公式是正确的.从 ,我们猜想其通项公式为本课小结本课小结1、归纳推理的含义、归纳推理的含义2、归纳推理的特点与过程、归纳推理的特点与过程3、归纳推理的作用、归纳推理的作用作作 业业1 1、作业本、作业本:2.1.1:2.1.1合情推理合情推理(一一)2 2、实习作业:、实习作业:(利用网络资源利用网络资源)孪生素数猜想;叙拉古猜想;蜂窝猜想;费马最后定理;七桥问题;欧拉回路 探究题:数列 满足 ,猜想此数列的通项公式.猜想:v教学总结:v(1)教学时间在重点班差不多,其他可能最后一题来不及;v(2)对特别情况特点的归纳以及归纳思想的掌握为教学重点.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服