1、2009年普通高等学校招生全国统一考试(广东A卷)数学(文科)本试卷共4页,21小题,满分150分。考试用时120分钟。注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。2. 选择题每小题选出答案后,用2B铅笔将答题卡上对应题目悬想的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。3. 费选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡个项目指定区域内相应位置上;如需改动,先花掉原来的答案,然后再写上新的答
2、案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。4. 作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,在作答。漏涂、错涂、多涂的,答案无效。5. 考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。参考公式:锥体的体积公式V=,其中S是锥体的底面积,h是锥体的高。一、选择题:本大题共10小题,每小题5分,满分50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知全集U=R,则正确表示集合M=1,0,1和N=关系的韦恩(Venn)图是2下列n的取值中,使in =1(i是虚数单位)的是An=2 Bn=3 Cn=4 Dn=53已知平面向量a =(x,1),b =
3、(x,x2 ),则向量a+b A平行于x轴 B平行于第一、三象限的角平分线 C平行于y轴 D平行于第二、四象限的角平分线4若函数是函数的反函数,且,则 A B C D5已知等比数列的公比为正数,且,则A B C D6给定下列四个命题:若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; 若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; 垂直于同一直线的两条直线相互平行; 若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。 其中,为真命题的是 A和 B和 C和 D和 7已知中,的对边分别为。若,且 ,则 A2 B C D8函数的单调递增区间是A
4、B(0,3) C(1,4) D9函数是A最小正周期为的奇函数 B最小正周期为的偶函数C最小正周期为的奇函数 D最小正周期为的偶函数10广州2010年亚运会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的路线距离(单位:百公里)见右表。若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是 A20.6 B21 C22 D23二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。 (一)必做题(1113题)11某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示: 图1是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框
5、应填 ,输出的= 。(注:框图中的赋值符号“=”也可以写成“”或“:=”)12某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1200编号,并按编号顺序平均分为40组(15号,610号,196200号)。若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人。 13以点(2,1)为圆心且与直线相切的圆的方程是_。(二)选做题(14、15题,考生只能从中选作一题)14(坐标系与参数方程选做题)若直线(为参数)与直线垂直,则常数=_。 15(几何证明选讲选做题)如图3,点A,B,C是圆上的点,且,则圆的
6、面积等于_。 三、解答题:本大题共6小题,满分80分。解答须写出文字说明、证明过程和演算步骤。16(本小题满分12分) 已知向量与互相垂直,其中.(1) 求和的值;(2) 若,求的值。17(本小题满分13分) 某高速公路收费站入口处的安全标识墩如图4所示。墩的上半部分是正四棱锥,下半部分是长方体。图5、图6分别是该标识墩的正(主)视图和俯视图。(1)请画出该安全标识墩的侧(左)视图; (2)求该安全标识墩的体积;(3)证明:直线平面. 18(本小题满分13分) 随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7。 (1)根据茎叶图判断哪个班的平均身高
7、较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。 19(本小题满分14分) 已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12。圆:的圆心为点。 (1)求椭圆G的方程; (2)求面积;(3)问是否存在圆包围椭圆G?请说明理由。 20(本小题满分14分)已知点是函数的图像上一点。等比数列的前n项和为。数列的首项为c,且前n项和满足(1)求数列和的通项公式; (2)若数列的前项和为,问满足的最小正整数是多少?21(本小题满分14分) 已知二次函数的导函数的图像与直线平行,且在处取得极小值。设函数。 (1)若曲线上的点到点的距离的最小值为,求的值; (2)如何取值时,函数存在零点,并求出零点。第 4 页 共 4 页