1、2010年海南高考理科数学试题 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第(22)-(24)题为选考题,其他题为必考题。考生作答时,将答案答在答题卡上,在本试卷上答题无效。考试结束后,将本试卷和答题卡一并交回。注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。2、选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书
2、写的答案无效。4、保持卷面清洁,不折叠,不破损。5、做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。参考公式:样本数据的标准差 锥体体积公式 其中为样本平均数 其中为底面面积,为高柱体体积公式 球的表面积,体积公式来源:Z。xx。k.Com 其中为底面面积,为高 其中R为球的半径第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)已知集合,则(A)(0,2) (B)0,2 (C)0,2 (D)0,1,2(2)已知复数,是z的共轭复数,则=A. B. C.1 D.2(3)曲线在点(-1,-1)处的切线方程为(
3、A)y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-2(4)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P到x轴距离d关于时间t的函数图像大致为(5)已知命题:函数在R为增函数,:函数在R为减函数,则在命题:,:,:和:中,真命题是(A), (B), (C), (D),(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为(A)100 (B)200 (C)300 (D)400(7)如果执行右面的框图,输入,则输出的数等于 (A)(B)(C)(D)(8)
4、设偶函数满足,则(A) (B) (C) (D) (9)若,是第三象限的角,则(A) (B) (C) 2(D) -2(10)设三棱柱的侧棱垂直于底面,所有棱长都为,顶点都在一个球面上,则该球的表面积为(A) (B) (C) (D) (11)已知函数若互不相等,且则的取值范围是(A) (B) (C) (D) (12)已知双曲线的中心为原点,是的焦点,过F的直线与相交于A,B两点,且AB的中点为,则的方程式为(A) (B) (C) (D) 第卷本卷包括必考题和选考题两部分,第(13)题第(21)题为必考题,每个试题考生都必须做答,第(22)题第(24)题为选考题,考试根据要求做答。二、填空题:本大题
5、共4小题,每小题5分。(13)设为区间上的连续函数,且恒有,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间上的均匀随机数和,由此得到N个点,再数出其中满足的点数,那么由随机模拟方案可得积分的近似值为 。(14)正视图为一个三角形的几何体可以是_(写出三种)(15)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为_(16)在ABC中,D为边BC上一点,BD=DC,ADB=120,AD=2,若ADC的面积为,则BAC=_三,解答题:解答应写出文字说明,正明过程和演算步骤(17)(本小题满分12分)设数列满足(1) 求数列的通项公式;(2) 令,求数列的前n
6、项和(18)(本小题满分12分)如图,已知四棱锥P-ABCD的底面为等腰梯形,ABCD,ACBD,垂足为H,PH是四棱锥的高 ,E为AD中点(1) 证明:PEBC(2) 若APB=ADB=60,求直线PA与平面PEH所成角的正弦值(19)(本小题12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:是否需要志愿 性别男女需要4030不需要160270(1) 估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2) 能否有99的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3) 根据(2)的结论,能否提供更好的调查方法来估计该地
7、区老年人,需要志愿帮助的老年人的比例?说明理由附:(20)(本小题满分12分)设分别是椭圆的左、右焦点,过斜率为1的直线与相交于两点,且成等差数列。(1)求的离心率; (2) 设点满足,求的方程(21)(本小题满分12分)设函数。(1) 若,求的单调区间;(2) 若当时,求的取值范围请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。(22)(本小题满分10分)选修4-1:几何证明选讲 如图,已经圆上的弧,过C点的圆切线与BA的延长线交于E点,证明:()ACE=BCD;()BC2=BFCD。(23)(本小题满
8、分10分)选修4-4:坐标系与参数方程 已知直线C1(t为参数),C2(为参数),()当=时,求C1与C2的交点坐标;()过坐标原点O做C1的垂线,垂足为,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线。(24)(本小题满分10分)选修4-5,不等式选项 设函数()画出函数的图像()若不等式的解集非空,求a的取值范围。数学试题参考答案一、 选择题(1)D (2)A (3)A (4)C (5)C (6)B(7)D (8)B (9)A (10)B (11)C (12)B二、填空题(13) (14)三棱锥、三棱柱、圆锥(其他正确答案同样给分)(15) (16)60三、解答题(17
9、)解:()由已知,当n1时,。而 所以数列的通项公式为。()由知 从而 -得 。即 (18)解:以为原点, 分别为轴,线段的长为单位长, 建立空间直角坐标系如图, 则 ()设 则 可得 因为所以 ()由已知条件可得 设 为平面的法向量 则 即因此可以取,由,可得 所以直线与平面所成角的正弦值为(19)解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为(2)。由于9.9676.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关。 (III)由(II)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地
10、区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好(20.)解:(I)由椭圆定义知,又,得的方程为,其中。设,则A、B两点坐标满足方程组化简的则因为直线AB斜率为1,所以得故所以E的离心率(II)设AB的中点为,由(I)知,。由,得,即得,从而故椭圆E的方程为。(21)解:(1)时,.当时,;当时,.故在单调减少,在单调增加(II)由(I)知,当且仅当时等号成立.故,从而当,即时,而,于是当时,.由可得.从而当时,故当时,而,于是当时,.综合得的取值范围为.(22)解:(I)因
11、为,所以.又因为与圆相切于点,故,所以.(II)因为,所以,故,即.(23)解: ()当时,的普通方程为,的普通方程为。联立方程组 ,解得与的交点为(1,0)。()的普通方程为。A点坐标为,故当变化时,P点轨迹的参数方程为:P点轨迹的普通方程为。故P点轨迹是圆心为,半径为的圆。(24) 解:()由于则函数的图像如图所示。()由函数与函数的图像可知,当且仅当或时,函数与函数的图像有交点。故不等式的解集非空时,的取值范围为。选择填空解析:一、选择题(共12小题,每小题5分,满分60分)1(5分)(2010海南)已知集合A=xR|x|2,则AB=()A(0,2)B0,2C0,2D0,1,2【考点】交
12、集及其运算菁优网版权所有【专题】计算题【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解【解答】解:A=xR|x|2,=xR|2x2,故AB=0,1,2应选D【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题2(5分)(2010海南)已知复数,是z的共轭复数,则=()ABC1D2【考点】复数代数形式的混合运算菁优网版权所有【分析】因为,所以先求|z|再求的值【解答】解:由可得另解:故选A【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算3(5分)(2010海南)
13、曲线y=在点(1,1)处的切线方程为()Ay=2x+1By=2x1Cy=2x3Dy=2x2【考点】利用导数研究曲线上某点切线方程菁优网版权所有【专题】常规题型;计算题【分析】欲求在点(1,1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率从而问题解决【解答】解:y=,y=,所以k=y|x=1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(1,1)处的切线方程为:y+1=2(x+1),即y=2x+1故选A【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于
14、基础题4(5分)(2010新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()ABCD【考点】函数的图象菁优网版权所有【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题5(5分)(2010海南)已知命题p1:函数y=2x2x在R为增函数,p2:函数y=2
15、x+2x在R为减函数,则在命题q1:p1p2,q2:p1p2,q3:(p1)p2和q4:p1(p2)中,真命题是()Aq1,q3Bq2,q3Cq1,q4Dq2,q4【考点】复合命题的真假;指数函数与对数函数的关系菁优网版权所有【专题】简易逻辑【分析】先判断命题p1是真命题,P2是假命题,故p1p2为真命题,(p2)为真命题,p1(p2)为真命题【解答】解:易知p1是真命题,而对p2:y=2xln2ln2=ln2(),当x0,+)时,又ln20,所以y0,函数单调递增;同理得当x(,0)时,函数单调递减,故p2是假命题由此可知,q1真,q2假,q3假,q4真故选C【点评】只有p1与P2都是真命题
16、时,p1p2才是真命题只要p1与p2中至少有一个真命题,p1p2就是真命题6(5分)(2010海南)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A100B200C300D400【考点】离散型随机变量的期望与方差;二项分布与n次独立重复试验的模型菁优网版权所有【专题】计算题;应用题【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数服从二项分布,即B(1000,0.1)又没发芽的补种2个,故补种的种子数记为X=2,根据二项分布的期望公式即可求出结
17、果【解答】解:由题意可知播种了1000粒,没有发芽的种子数服从二项分布,即B(1000,0.1)而每粒需再补种2粒,补种的种子数记为X故X=2,则EX=2E=210000.1=200故选B【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力属于基础性题目7(5分)(2010新课标)如果执行右面的框图,输入N=5,则输出的数等于()ABCD【考点】设计程序框图解决实际问题菁优网版权所有【专题】操作型【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:
18、该程序的作用是累加并输出S=的值S=1=故选D【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模8(5分)(2010海南)设偶函数f(x)满足f(x)=2x4(x0),则x|f(x2)0=()Ax|x2或x4Bx|x0或x4Cx|x0或x6Dx|x2或x2【考点】偶函数;其他不等式的解法菁优网版权所有【专题】计算题【分析】由偶函数f(x)满足f(x
19、)=2x4(x0),可得f(x)=f(|x|)=2|x|4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案【解答】解:由偶函数f(x)满足f(x)=2x4(x0),可得f(x)=f(|x|)=2|x|4,则f(x2)=f(|x2|)=2|x2|4,要使f(|x2|)0,只需2|x2|40,|x2|2解得x4,或x0应选:B【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算9(5分)(2010海南)若,是第三象限的角,则=()ABC2D2【考点】半角的三角函数;弦切互化菁优网版权所有【专题】计算题【
20、分析】将欲求式中的正切化成正余弦,还要注意条件中的角与待求式中角的差别,注意消除它们之间的不同【解答】解:由,是第三象限的角,可得,则,应选A【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力10(5分)(2010海南)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()Aa2BCD5a2【考点】球内接多面体菁优网版权所有【专题】计算题【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的
21、半径为,球的表面积为,故选B【点评】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力11(5分)(2010海南)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A(1,10)B(5,6)C(10,12)D(20,24)【考点】分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质菁优网版权所有【专题】作图题;压轴题;数形结合【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨abc,求出abc的范围即可【解答】解:作出函数f(x)的图象如图,不妨设abc,则ab=1,则abc=c(
22、10,12)故选C【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力12(5分)(2010海南)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(12,15),则E的方程式为()ABCD【考点】双曲线的标准方程;直线与圆锥曲线的综合问题菁优网版权所有【专题】计算题;圆锥曲线的定义、性质与方程【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B点坐标代入方程联立相减得x1+x2=24,根据=,可求得a和b的关系,再根据c=3,求得a和b,进而可得答案【解答】解:由已知条件易得直线l的斜率为k=kPN=1,设双曲线
23、方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=24,y1+y2=30得=,从而=1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B【点评】本题主要考查了双曲线的标准方程考查了学生综合分析问题和解决问题的能力二、填空题(共4小题,每小题5分,满分20分)13(5分)(2010海南)设y=f(x)为区间0,1上的连续函数,且恒有0f(x)1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间0,1上的均匀随机数x1,x2,xN和y1,y2,yN,由此得到N个点(xi,yi)(i=1,2,N),再数出其中满足yif(xi)(i=1,2,N)的点
24、数N1,那么由随机模拟方案可得积分的近似值为【考点】模拟方法估计概率;定积分在求面积中的应用;几何概型菁优网版权所有【专题】计算题【分析】要求f(x)dx的近似值,利用几何概型求概率,结合点数比即可得【解答】解:由题意可知得,故积分的近似值为故答案为:【点评】本题考查几何概型模拟估计定积分值,以及定积分在面积中的简单应用,属于基础题14(5分)(2010海南)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【考点】简单空间图形的三视图菁优网版权所有【专题】阅读型【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,
25、即可回答本题【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等故答案为:三棱锥、圆锥、三棱柱【点评】本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力15(5分)(2010海南)过点A(4,1)的圆C与直线xy=1相切于点B(2,1),则圆C的方程为(x3)2+y2=2【考点】圆的标准方程;直线与圆的位置关系菁优网版权所有【专题】压轴题【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程【解答】解:设圆的方程为(xa)2+(yb)2=r2,则,解得,故所求圆的方程为(x3
26、)2+y2=2故答案为:(x3)2+y2=2【点评】命题意图:本题主要考查利用题意条件求解圆的方程,通常借助待定系数法求解16(5分)(2010海南)在ABC中,D为边BC上一点,BD=DC,ADB=120,AD=2,若ADC的面积为,则BAC=60【考点】余弦定理的应用菁优网版权所有【专题】计算题;压轴题【分析】先根据三角形的面积公式利用ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB最后在三角形ABC中利用余弦定理求得cosBAC,求得BAC的值【解答】解:由ADC的面积为可得解得,则AB2=AD2+BD22ADBDcos120=,则=故BAC=60【点评】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力12
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100