ImageVerifierCode 换一换
格式:PDF , 页数:3 ,大小:93.04KB ,
资源ID:4809580      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4809580.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(新型光源APL86 NanoLED295.pdf)为本站上传会员【wei****ing】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

新型光源APL86 NanoLED295.pdf

1、Selective excitation of tryptophan fluorescence decay in proteinsusing a subnanosecond 295 nm light-emitting diodeand time-correlated single-photon countingColin D.McGuinnessPhotophysics Research Group,Department of Physics,University of Strathclyde,107 Rottenrow,GlasgowG4 0NG,United KingdomKulwinde

2、r Sagoo and David McLoskeyHoriba Jobin Yvon IBH Limited,Skypark 5,45 Finnieston Street,Glasgow G3 8JU,United KingdomDavid J.S.Bircha?Photophysics Research Group,Department of Physics,University of Strathclyde,107 Rottenrow,GlasgowG4 ONG,United Kingdom?Received 15 March 2005;accepted 31 May 2005;publ

3、ished online 24 June 2005?We demonstrate an AlGaN light-emitting diode?LED?giving pulses of?600 ps full width halfmaximum,0.35?W average power,0.6 mW peak power,and?12 nm bandwidth at 295 nm.Thissource is ideal for protein intrinsic tryptophan fluorescence decay research without the unwantedexcitati

4、on of tyrosine and paves the way to lab-on-a-chip protein assays using fluorescence decaytimes.Fluorescence decay and anisotropy decay measurements of human serum albumin arereported and the usefulness of the 295 nm LED demonstrated in comparisons with a nanosecondflashlamp and LEDs with nominal wav

5、elength emission of 280 nm.2005 American Institute ofPhysics.?DOI:10.1063/1.1984088?Recently,there has been much focus on the area of deepultraviolet?UV?nitride light-emitting diodes?LEDs?.AlGaNLEDs have been fabricated with wavelength emission at280 nm?Ref.1?and 237 nm.2In previous work,we reported

6、a subnanosecond pulsed LED at 280 nm and its applicationto protein research,which is key to understanding much ofmolecular biology.3Others have reported the application of apulsed UV LED operating in the 340 nm wavelength region,and its application to time-resolved fluorescence spectros-copy of nico

7、tinamide adenine dinucleotide?NADH?,4an im-portant indicator of cell metabolism.These UV LED sourcesare of particular interest as they excite such important bio-molecules conveniently,reliably,and inexpensively.Previ-ously,the study of time-resolved fluorescence of amino acidsand NADH,required the u

8、se of optical sources,such assynchrotrons,5mode-locked lasers,6and flashlamps,7all to-tally incompatible with miniaturized technologies.UV ni-tride semiconductor devices have the potential to replacesuch high cost or high maintenance sources in biomolecularfluorescence research and have been the mis

9、sing element inthe search to achieve lab-on-a-chip assays based on fluores-cence lifetimes.Semiconductor devices for single-photoncounting and timing have been available for some time in theform of avalanche photodiodes.8When combined with pro-teins entrapped in a biocompatible porous matrix,such as

10、 asilica sol gel,9to exclude high molecular weight interferentsand transmit low molecular weight metabolites,the way isclear for the fabrication of lab-on-a-chip fluorescence decaytime-based biosensors.Fluorescence decay time assays arewell known to have advantages over conventional fluores-cence as

11、says with respect to independence of fluorophoreconcentration,ease of calibration,discrimination against artl-facts and photon counting sensitivity.Typical of the range offluorescence lifetime assays,which might now be incorpo-rated on a chip include glucose sensing10for diabetes man-agement using t

12、he glucose transport protein hexokinase andiron monitoring using transferrin.11Here,we report the char-acteristics and application to fluorescence decay studies of asubnanosecond pulsed LED operating at 295 nm,againbased on AlGaN fabrication technology.12Our recently re-ported 280 nm LED is ideal fo

13、r exciting tyrosine,however,itis well known that the kinetics are simplified by selectivelyexciting tryptophan,the most widely used amino acid probe,using an excitation wavelength of 295 nm.5,13,14We believethis source will be of interest to researchers wishing to in-vestigate intrinsic protein tryp

14、tophan fluorescence decay ina?Also at:Horiba Jobin Yvon IBH Limited,Skypark 5,45 Finnieston St.,Glasgow G3 8JU,UK;electronic mail:djs.birchstrath.ac.ukFIG.1.295 nm LED,5000 F flashlamp,latest 280 nm LED and prototype280 nm3LED pulse widths shown on a semilogarithmic scale.Legend is asfollows:5000 F

15、Flashlamp,295 nm LED,latest 280 nm LED,and prototype 280 nm LED.APPLIED PHYSICS LETTERS 86,261911?2005?0003-6951/2005/86?26?/261911/3/$22.50 2005 American Institute of Physics86,261911-1Downloaded 30 Jun 2005 to 130.159.254.2.Redistribution subject to AIP license or copyright,see http:/apl.aip.org/a

16、pl/copyright.jspspectroscopy,sensing,microscopy and imaging.The fluorescence and anisotropy decay parameters of hu-man serum albumin?HSA?in phosphate buffered saline?PBS?pH 7.4?at a concentration of 2.5 mg/ml were mea-sured in order to demonstrate the source.HSA contains asingle tryptophan residue t

17、hat simplifies the kinetics,but at280 nm,as well as direct tryptophan excitation,energy trans-fer from tyrosine to tryptophan also takes place,complicat-ing the kinetics and leading to fluorescence depolarizationother than by fluorophore mobility.To measure protein fluo-rescence decays,we have used

18、the time-correlated single-photon counting?TCSPC?technique15to record,and IBHreconvolution software to analyze,the fluorescence decays.Here,the 295 nm LED has been installed and configured inthe IBH NanoLED drive circuitry operated at 1 MHz to pro-duce LED pulsing and TCSPC synchronization.The data

19、ac-cumulation rate in TCSPC is proportional to the source rep-etition rate up to?2%if pile-up effects are to be avoided.15Figure 1 shows the pulse duration of the 295 nm LED,compared with a coaxial nanosecond hydrogen flashlamp,7prototype 280 nm LED?Ref.3?and the latest productionversion of the puls

20、ed 280 nm LED technology,recorded us-ing the IBH TBX-04 detector under TCSPC conditions.Theinstrumental full width half maximum?FWHM?of the295 nm LED,including the detector response,is?640 ps.Given the impulse response of the detector is?200 ps,thisleads to an estimate of the LED optical pulse durat

21、ion,usingaddition in quadrature,to be?600 ps.This compares favor-ably with the flashlamp?900 ps?and is comparable to the280 nm LED.3The LEDs faster pulse is a great advantageover flashlamps,as it allows shorter lifetimes to be resolved.The log scale clearly shows the sharp LED pulses free fromafterg

22、low,before or after pulses.Figure 2 shows the full spectral response of the 295 nmLED recorded using a SPEX FluoroMax2 at 2 nm spectralbandwidth.The spectral FWHM is?12 nm and the poweroutput of the 295 nm LED is typically?0.6 mW peak powerand 0.35?W average power when driven from the IBHNanoLED dri

23、ve circuitry?1 MHz repetition rate?with theoutput optics removed and the power meter?HamamatsuModel No.S1277-1010BQ?placed close to the LED.Thespectrum shows the response to be free from long wave-length emission,which was previously observed with theprototype 280 nm devices.3Fluorescence decay meas

24、urements were carried out us-ing the IBH 5000U fluorescence lifetime system incorporat-ing a TBX-04 picosecond photon detection module,and ex-TABLE I.Source power and the HSA decay parameters obtained.Errors are quoted to three standard deviations.Source?1?ns?Relative intensity?2?ns?Relative intensi

25、ty?3?ns?Relative intensity?2Flourescence countrateAveragepowerPeakpower5000 Fa0.920.413%4.270.3144%7.450.1153%1.077000.45?Wb12 mWb295 nm LEDa0.450.262%3.950.2738%7.250.0860%1.0813 000d0.35?W0.6 mWLatest280 nm LEDa0.870.145%4.120.4742%7.220.1153%1.0462 000d0.70?W1.2 mWPrototype280 nm LEDc0.630.086%3.

26、820.4241%7.160.1053%1.139000.42?W0.7 mWaFluorescence count rates obtained with excitation and emission monochromators configured to 12 nm and 16 nm bandwidth,respectively.bThe flashlamp powers are integrated from 200 nm to 1000 nm.cFluorescence count rate obtained with both excitation and emission m

27、onochromator bandwidths at 32 nm.The lower count rate,obtained from the prototype280 nm diode compared with the 295 nm diode,despite its higher-power output and greater bandwidth,is due to less efficient collection optics on the diode.dThe difference between the fluorescence rates as compared with t

28、he powers for the 295 nm LED and latest 280 nm LED is caused by the preferentialexcitation of the larger number of tyrosines with the 280 nm LED.FIG.2.Full spectral profiles of 295 nm LED,latest 280 nm LED,andprototype 280 nm LED3.Legend is as follows:295 nm LED?actual peak296 nm?,latest 280 nm LED?

29、actual peak 279 nm?,and pro-totype 280 nm LED?actual peak 282 nm?.FIG.3.HSA fluorescence decay including fitted function and residuals.261911-2McGuinness et al.Appl.Phys.Lett.86,261911?2005?Downloaded 30 Jun 2005 to 130.159.254.2.Redistribution subject to AIP license or copyright,see http:/apl.aip.o

30、rg/apl/copyright.jspcitation and emission f/3 monochromators incorporating aholographic grating in a Seya Namioka geometry.Table Icompares the HSA decay parameters recorded with the295 nmLEDandtheIBH5000Fcoaxialhydrogenflashlamp.The excitation monochromator was tuned to295 nm,and the emission monoch

31、romator tuned to 335 nmto select fluorescence.A factor of?20?higher protein fluo-rescence count can be obtained from the 295 nm LED whencompared to the flashlamp.This equates to a collection timeof?2 min for the LED compared with?30 min for theflashlamp,counting over 2048 channels with 0.057 ns perm

32、ultichannel analyzer channel and collecting to 10 000counts in the peak channel.The data are fitted to a threeexponential model with a?2goodness of fit criterion.Thesedecay parameters can be attributed to the widely acceptedtryptophan conformer model.16The data obtained from theLED are in good agree

33、ment with the data obtained from theflashlamp within the error of three standard deviations.Alsoincluded in Table I are the decay parameters obtained fromthe latest,and lower power prototype3280 nm LED,againfitted to a three-exponential model.The decay parametersobtained with all four devices are in

34、 good agreement.Figure3 shows the fluorescence decay,including fitted function andresiduals,of HSA in PBS buffer,recorded with the 295 nmLED and is shown to be free from systematic errors such asradio-frequency interferences,scattered excitation light,tem-poral instabilities,etc.Fluorescence anisotr

35、opy measurements were also carriedout using the IBH 5000U fluorescence lifetime system,col-lecting until a difference of 10 000 counts is obtained be-tween horizontal and vertical emission polarizer orientations.Table II compares the rotational decay parameters recordedby fitting to the fluorescence

36、 anisotropy decay with the295 nm and latest 280 nm LED.In both cases,the Brownianrotation of the whole protein is the dominant parameter?longest decay component?.As expected,the 280 nm LEDyields shorter rotational times,and lower initial anisotropy,as energy transfer from the 18 tyrosines to the sin

37、gle tryp-tophan takes place,thus contributing to the more rapid fluo-rescence depolarization in addition to that caused by tryp-tophan local motion.Fluorescence anisotropy measurementson proteins using a flashlamp are well known to be quitetime consuming and close to the limit of what is comfortably

38、measurable.However,using pulsed UV LED technology,fluorescence anisotropy measurements can be obtained withmuch less effort,higher stability,and in a fraction of the time?c.f.Table I?.In measurements on HSA,we have demonstrated selec-tive excitation of tryptophan fluorescence decay in proteinswith a

39、 295 nm LED for the first time.While our previouslyreported excitation of protein fluorescence using a 280 nmLED was a significant step,the use of a 295 nm LED forexciting tryptophan fluorescence means the ideal source forprotein lab-on-a-chip fluorescence assays is now available.One of the authors?

40、D.J.S.B.?would like to thank theEPSRC for research grants and a studentship held by CDM.The help of J.Broadfoot,J.Revie,and P.Thompson is grate-fully acknowledged.1W.H.Sun,J.P.Zhang,V.Adivarahan,A.Chitnis,M.Shatalov,S.Wu,V.Mandavilli,J.W.Yang,and M.A.Khan,Appl.Phys.Lett.85,531?2004?.2A.A.Allerman,M.

41、H.Crawford,A.J.Fischer,K.H.A.Bogart,S.R.Lee,D.M.Follstaedt,P.P.Provencio,and D.D.Koleske,J.Cryst.Growth 272,227?2004?.3C.D.McGuinness,K.Sagoo,D.McLoskey,and D.J.S.Birch,Meas.Sci.Technol.15,L19?2004?.4H.Peng,E.Makarona,Y.He,Y.-K.Song,A.V.Nurmikko,J.Su,Z.Ren,M.Gherasimova,S-R.Jeon,G.Cui,and J.Han,Appl

42、Phys.Lett.85,1436?2004?.5I.Munro,I.Pecht,and L.Stryer,Proc.Natl.Acad.Sci.U.S.A.76,56?1979?.6E.W.Small,Topics in Fluorescence Spectroscopy,edited by J.R.Lakow-icz?Plenum,New York,1991?,Vol.1,pp.97182.7D.J.S.Birch and R.E.Imhof,Rev.Sci.Instrum.52,1206?1981?.8H.Dautet,P.Deschamps,B.Dion,A.D.MacGregor,

43、D.MacSween,R.J.McIntyre,C.Trottier,and P.P.Webb,Appl.Opt.32,3894?1993?.9J.D.Brennan,Appl.Spectrosc.53,106A?1999?.10F.Hussain,D.J.S.Birch,and J.C.Pickup,Anal.Biochem.339,137?2005?.11M.S.Navati,U.Samuai,P.Aisen,and J.M.Friedman,Proc.Natl.Acad.Sci.U.S.A.100,2832?2003?.12T.Whitaker?http:/optics.org?.13B

44、Valuer,Molecular Fluorescence?Wiley-VCH,Weinheim,2002?.14M.R.Eftink,Biophys.J.66,482?1994?.15D.J.S.Birch and R.E.Imhof,Topics in Fluorescence Spectroscopy,edited by J.R.Lakowicz?Plenum,New York,1991?,Vol.1,pp.195.16A.G.Szabo and D.M.Rayner,J.Am.Chem.Soc.102,554?1980?.TABLE II.Comparison of rotation

45、al decay parameters measured using the 295 nm and latest 280 nm LED.Errors are quoted to three standard deviations.Source?r1?ns?Relativeintensity?r2?ns?RelativeintensityInitialanisotropy?2295 nm LED1.040.680.4%32.281.9699.6%0.1980.98Latest280 nm LED0.720.321.3%20.561.2898.7%0.1360.95261911-3McGuinness et al.Appl.Phys.Lett.86,261911?2005?Downloaded 30 Jun 2005 to 130.159.254.2.Redistribution subject to AIP license or copyright,see http:/apl.aip.org/apl/copyright.jsp

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服