ImageVerifierCode 换一换
格式:PPTX , 页数:71 ,大小:1.26MB ,
资源ID:4798538      下载积分:16 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4798538.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(大学高等数学06定积分.pptx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

大学高等数学06定积分.pptx

1、第一节第一节 定积分的概念与性质定积分的概念与性质一、引入定积分概念的实例一、引入定积分概念的实例 二、定积分的概念二、定积分的概念 三、定积分的几何意义三、定积分的几何意义四、定积分的性质四、定积分的性质引例引例1 曲边梯形的面积曲边梯形的面积曲边梯形曲边梯形 设函数设函数f(x)在区间在区间 a,b(a,也可能,也可能,但一定要求,但一定要求满足满足 ,即,即 对应于对应于 ,对应于对应于 .例1 求解方法二方法二例例4 求求解例例7证明证明 例例7表明了连续的奇、偶函数在对称区间表明了连续的奇、偶函数在对称区间a,a上的上的积分性质,即偶函数在积分性质,即偶函数在a,a上的积分等于区间上

2、的积分等于区间0,a上上积分的两倍;奇函数在对称区间上的积分等于零,可积分的两倍;奇函数在对称区间上的积分等于零,可以利用这一性质,简化连续的奇、偶函数在对称区间以利用这一性质,简化连续的奇、偶函数在对称区间上的定积分的计算上的定积分的计算.例例8 8解解例例9 证明证明证明证明 应用分部积分公式计算定积分时,只要在不定积分的结果中代入上下限作差即可.若同时使用了换元积分法,则要根据引入的变量代换相应地变换积分限.二、定积分的分部积分法二、定积分的分部积分法例例10解解例例12 求求解例例13 求求解解第四节第四节 广义积分广义积分一、无穷区间上的广义积分一、无穷区间上的广义积分二、无界函数的

3、广义积分二、无界函数的广义积分 函数f(x)在无穷区间 上的广义积分,记作 ,即定义1 若上述等式右端的极限存在,则称广义积分 收敛;如果上述极限不存在,则称广义积分 发散.一、无穷区间上的广义积分 类似地,无穷区间 上的广义积分定义为无穷区间 上的广义积分定义为上述三种方法统称为无穷区间上的广义积分.例1 求解例2 求解所以,广义积分 收敛,且例3证明若上式右端极限存在,则称广义积分 收敛.如果上述极限不存在,就称广义积分发散.定义2 设函数f(x)在(a,b上连续,且极限称为无界函数称为无界函数 在在(a,b上的积分上的积分,记为记为二、无界函数的广义积分 类似地,函数f(x)在a,b)上连续,且 广义积分定义为如果极限存在,则称广义积分 收敛.如果上述极限不存在,就称广义积分 发散.此时,如果上式右端两个广义积分 都收敛,则称广义积分 收敛,否则称广义积分 发散.上述三种积分统称为无界函数的广义积分,也称为瑕积分.函数f(x)在a,b上除点x=c(a,b)外都连续,且 ,则广义积分定义为例5 计算解由于上面两个极限都不存在由于上面两个极限都不存在,所以所以发散发散.例7解

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服