ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:213.50KB ,
资源ID:4785887      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4785887.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(本科毕业论文-—kdv方程的近似行波解.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

本科毕业论文-—kdv方程的近似行波解.doc

1、 KdV方程的近似行波解 数学与应用数学专业 学生:王芳 指导教师:高正晖 摘 要:本文利用傅里叶级数法,吴消元法获得了KdV方程的多组近似行波解. 关键词:KdV方程;傅里叶级数法;吴消元法;近似行波解 1 引言 随着应用科学的发展,使得描述实际现象的非线性偏微分方程越来越突现其重要性.最早用于描述浅水波现象的KdV方程 . 在经过长时间沉寂后,随着孤波理论的发展,方程本身和解的意义被人们重新认识,吸引了科学家的研究兴趣.人们发现各种不同形式的KdV方程可以描述很多领域中的不同现象.如:弱非线性,弱色散的平面波系统

2、运动,等离子体中的磁流体波.而方程的近似解能使物理现象得到进一步的解释.因此,对数学家、物理学家、工程学家及应用科学工作者来说,寻找对应实用背景方程的近似解一直是大家关注的问题.由于非线性方程问题的复杂性和特殊性,非线性方程没有统一的求解办法,因而出现求解非线性方程的各种方法,如直接积分法,混合指数法,齐次平衡法,双曲函数展开法及Baclund变换法等.所有这些方法都有一定的局限性.本文采用傅里叶级数法和吴文俊消元法,获得了非线性方程 KdV 的多组近似行波解. 2 KdV方程的求解 方程可表示为: .

3、 (1) 现在用傅里叶级数法来求解上述方程,为了求解(1)式.令: (2) 将(2)式代入方程(1) 可得常微分方程: . (3) 对(3)式积分一次, 取积分常数,得:

4、 . (4) 由傅里叶级数法,设方程(4)有如下形式的行波解 . (5) 2.1当时: . (6) 其中为待定系数. 将(6)式代入(4)式 即:

5、 (7) 令(7)式中的常数项以及各次项的系数为零,得到如下方程组: 解得: ① ② 其中为任意常数. 于是方程(4)有如下形式的解:

6、 ① ② 2.2当时: (8) 其中为待定系数. 将(8)式代入(4)式 即: (9)

7、 令(9)中的常数项及各次项的系数为零,得到如下方程组: (10) 利用吴消元法解上述关于的方程组得: ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 其中为任意常数. 于是方程(4)有如下形式的解:

8、 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 3 结束语 本文以KdV方程为例,介绍了用傅里叶级数法和吴消元法求解近似行波解的方法,从而揭示了求解非线性发展方程精确行波解理论与技巧. 参考文献: [1]赵长海.KdV方程的显示行解[J].海南师范大学学报(自然科学版),2010,23(3):142-146. [2]高正晖,罗李平,杨柳.求非线性发展方程精确行波解的几种方法[J].衡阳师范学院学报,2009,30(6):13-17. [3]高正晖

9、2+1)维CD方程的精确行波解[J].科学技术与工程,2009,9(8):2122-2125. [4]刘洪林,刘洪元.吴消元法的初等代数形式[J].沈阳师范大学学报(自然科学版),2005,23(3):248-251. [5]刘洪元.吴消元法与四元术[J].辽宁大学学报(自然科学版),2004,1(4):338-341. [6]张克磊.几类非线性波动方程行波解分支的研究[D].桂林:桂林科技大学数学研究所,2010. [7]殷俊.三类广义KdV 方程的行波解[D].成都:四川师范大学,2008. [8]傅海明.一类五阶KdV方程行波解[J].鸡西大学学报,2008,8(6):1

10、42-143. [9]叶健芬,蔡桂平,虞凤英.利用双曲函数法研究非线性方程的行波解[J].温州师范学院学报(自然科学版) ,2006,27(2):1-4. [10]李俊焕,郑一.两种方法求KdV方程的新解[J].青岛理工大学学报,2011,32(5):123-126. Approximate Traveling Wave Solutions of KdV Equation Mathematics and Applied Mathematics Author:Wang Fang Tutor: Gao Zhenghui Abstract: In this paper, KdV equation groups of traveling wave solutions are obtained by using Fourier series method and Wu elimination method. Key words: KdV equation; Fourier series method ; Wu elimination method ; Approximate traveling wave solutions

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服