ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:17KB ,
资源ID:4772439      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4772439.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(张弦梁结构的探讨.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

张弦梁结构的探讨.doc

1、张弦梁结构的探讨 0 引言   张弦梁结构最早是由日本大学M.Saitoh教授提出,是一种区别于传统结构的新型杂交屋盖体系。张弦梁结构是一种由刚性构件上弦、柔性拉索、中间连以撑杆形成的混合结构体系,其结构组成是一种新型自平衡体系,是一种大跨度预应力空间结构体系,也是混合结构体系发展中的一个比较成功的创造。张弦梁结构体系简单、受力明确、结构形式多样、充分发挥了刚柔两种材料的优势,并且制造、运输、施工简捷方便,因此具有良好的应用前景。   本文就张弦梁结构的分类,受力机理,张弦梁结构的找形分析,用有限元分析总结了撑杆数目、垂跨比、高跨比、拱的惯性矩、弦的预应力等对张弦梁结构的受力

2、性能的影响,以及结构的稳定性分析。 1、张弦梁结构的受力机理和分类 1.1、张弦梁结构的受力机理   目前,普遍认为张弦梁结构的受力机理为通过在下弦拉索中施加预应力使上弦压弯构件产生反挠度,结构在荷载作用下的最终挠度得以减少,而撑杆对上弦的压弯构件提供弹性支撑,改善结构的受力性能。一般上弦的压弯构件采用拱梁或桁架拱,在荷载作用下拱的水平推力由下弦的抗拉构件承受,减轻拱对支座产生的负担,减少滑动支座的水平位移。由此可见,张弦梁结构可充分发挥高强索的强抗拉性能改善整体结构受力性能,使压弯构件和抗拉构件取长补短,协同工作,达到自平衡,充分发挥了每种结构材料的作用。   所以,

3、张弦梁结构在充分发挥索的受拉性能的同时,由于具有抗压抗弯能力的桁架或拱而使体系的刚度和稳定性大为加强。并且由于张弦梁结构是一种自平衡体系,使得支撑结构的受力大为减少。如果在施工过程中适当的分级施加预拉力和分级加载,将有可能使得张弦梁结构对支撑结构的作用力减少的最小限度。 1.2、张弦梁结构的分类   张弦梁结构按受力特点可以分为平面张弦梁结构和空间张弦梁结构。   平面张弦梁结构是指其结构构件位于同一平面内,且以平面内受力为主的张弦梁结构。平面张弦梁结构根据上弦构件的形状可以分为三种基本形式:直线型张弦梁、拱形张弦梁、人字型张弦梁结构,(如图2)。   直梁型张弦梁结构

4、主要用于楼板结构和小坡度屋面结构,拱形张弦梁结构充分发挥了上弦拱得受力优势适用于大跨度的屋盖结构,人字型张弦梁结构适用于跨度较小的双坡屋盖结构。 图1 张弦梁结构得名形式 图2 平面张弦梁结构   空间张弦梁结构是以平面张弦梁结构为基本组成单元,通过不同形式的空间布置所形成的张弦梁结构。空间张弦梁结构主要有单向张弦梁结构、双向张弦梁结构、多向张弦梁结构、辐射式张弦梁结构。(如图3)   单向张弦梁结构由于设置了纵向支撑索形成的空间受力体系,保证了平面外的稳定性,适用于矩形平面的屋盖结构。双向张弦梁结构由于交叉平面张弦梁相互提供弹性支撑,形成了纵横

5、向的空间受力体系,该结构适用于矩形、圆形、椭圆形等多种平面屋盖结构。多向张弦梁结构是平面张弦梁结构沿多个方向交叉布置而成的空间受力体系,该结构形式适用于圆形和多边形平面的屋盖结构。辐射式张弦梁结构是由中央按辐射状放置上弦梁,梁下设置撑杆用环向索而连接形成的空间受力体系,适用于圆形平面或椭圆形平面的屋盖结构。 图3 空间张弦梁结构 2、张弦梁结构的找形分析 2.1 张弦梁结构的形态定义 张弦梁结构象悬索结构等柔性结构一样,根据张弦梁结构的加工、施工、及受力特点。通常也将其结构形态定义为零状态、初始态和荷载态。   零状态,是拉索张拉前的状态,实际上是构件加

6、工和放样形态,通常也叫结构放样态。   初始态,是拉索张拉完毕后,结构安装就位的形态,通常也叫预应力状态。初始态是建筑施工图中明确的结构外形。(包括在自重作用下)   荷载态,是外荷载作用在初始态结构上发生变形后大平衡态。    如果张弦梁结构的上弦构件按照初始形态给定的几何参数进行加工放样,那么在张拉拉索时,由于上弦构件刚度较弱,拉索的张拉势必会引导撑杆使上弦构件产生向上的变形,当张拉完毕后,结构上弦构件的形状将偏离初始形态,从而不满足建筑设计的要求。因此,张弦梁结构上弦构件的加工放样通常要考虑张拉产生的变形影响,这也是张弦梁结构需要进行形态定义的原因。 2.2 张弦

7、梁结构找形分析   目前有关文献中找形的方法不外乎有张其林提出的逆迭代法、文献中改进的逆迭代法。 I.逆迭代法的简介   逆迭代法实际上是一种非常自然的思路:既然设计蓝图上的张弦梁几何尺寸是初状态(预应力张拉完毕时结构的状态)的尺寸,那么就可以以此初状态尺寸为近似零状态尺寸建立有限元模型,然后对其施加预应力(预应力值按设计要求)进行张拉,得到近似初状态。然后将此近似初状态的几何尺寸与设计图中真正的初状态的几何尺寸的差值反向增加到原有限元模型的节点坐标上,作为近似初状态重新建模,并再次进行张拉,如此循环迭代,直到近似初状态与初状态的坐标差值足够小,即可视此近似初状态为初状态,而

8、由之张拉而来的近似零状态为要求的零状态。如此既可得到零状态几何尺寸(施工人员据此放样),又可得到初状态的内力、应力分布,从而完成找形工作。实践证明,只需进行次数不多的迭代,就可达到足够的找形计算精度。 II.改进的逆迭代法   上面提到的逆迭代法是将端部索段断开,,释放该处屋架上下弦的水平约束,并将该索段的预拉力的水平分量作为外力分别反向作用在屋架上下弦端部,进而一步步逆迭代计算。这种处理方法固然可以求出零状态的几何参数和初始态预应力分布,但是如果要在此基础上继续进行荷载态的分析,则举步维艰。因为索切断之后的结构已经转化为静定结构,在这个静定结构上加载分析显然不能反映原先结构的受力特性,特别是此时下弦索内力已不会再随荷载的变化而变化,失去了其原有的作用。   改进的逆迭代法,不是把索段用力张拉来实现,而是在索段中施加一定大小的初应变,使其在变形协调后该索段的内力等于预定值,通过这样的改变使得研究问题可以在此基础上连续进行承受外荷载作用下的分析。从而弥补了以往预应力张弦梁结构的力学性能研究中未能考虑受力状态改变的缺陷。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服