ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:33KB ,
资源ID:4772016      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4772016.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(专题资料(2021-2022年)大数据与风险管理.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

专题资料(2021-2022年)大数据与风险管理.doc

1、大数据与风险管理 数据和风险历来就是银行的两大要素。数据是银行最有价值的资产,银行本身从事的是有风险的业务,如何依靠数据,量化风险,是发挥数据价值的关键。银行过去的风险管理与决策,以主观经验判断为主,辅以数据支撑,导致银行风险管理水平较低。而在当前宏观经济调整、利率市场化、外部竞争加剧的大环境中,如何依靠数据,量化风险,提高管理决策水平,进而提升银行竞争力,显得极为重要。本文在大数据不断升温的背景下,就大数据的有效性以及大数据在银行风险管理的应用等相关问题进行分析研究,希望能对有效大数据的建立以及大数据在银行风险管理方面的运用起到一定的借鉴意义。 大数据的有效性 运用大数据对银行风险进行

2、管理,第一步是建立一个安全有效的大数据。大数据服务于银行业务,故有效大数据推进过程中的数据、技术、成本选择方面应于银行业务相融合。在数据选择方面,充分挖掘银行内部沉睡数据(工资代发、年金、基金托管、公司账户等)的同时,注重互联网站、社交媒体、电商等新型数据来源,建立一个覆盖结构化、半结构化、非结构化的360维度的数据库;在技术决策方面,规避选择错误、过于滞后或者超前的风险,大数据是未来总体趋势,然而是分阶段推进的,当前尚处于初级水平。银行切勿急功近利,抱有太高期望,选择不切合实际的软硬件,所有这些都会对银行的发展带来不利影响;在成本投入方面,应综合评估开发管理维护成本,要注重考量银行业务人员使

3、用的难易度。总之一个安全有效的大数据要基于对银行业务的融合,同时要防止数据泄露,保护客户隐私,这是大数据在风险管理应用的前提。 大数据推动风险管理 本文所论述的大数据在风险管理的运用,是银行业务方面,特指信用风险,包括信贷、抵押、信用卡等,而非内部控制风险,也不是银行的操作市场流动性风险。 在信贷领域,由于信息的不对称,将产生道德风险,致使银行遭受损失。银行对客户信息的获取大多源于客户申请贷款所填表格以及银行与客户面对面的交流,信息来源的广度和真实性可见一斑。通过大数据的运用,银行整合更多外部数据,以拓展对客户的了解,降低信用风险。数据收集包括(1)客户在社交媒体上的行为数据(光大银行建

4、立了社交网络信息数据库)。通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的风险管理(2)客户在电商网站的交易数据,建设银行则将自己的电子商务平台和信贷业务结合起来(3)企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。借鉴国外大数据在银行信贷的实践:美国一家名为SCOR的金融信息公司抓取并分析客户的社交网站数据,为银行提供更为准确的信用评估结果,降低银行的信用风险和成本

5、SCOR公司收到银行客户的信用评估申请后,经客户同意,将调取其在facebook、twitter等社交媒体的数据,分析客户的行为特点,兴趣爱好,甚至会根据该客户朋友圈特性来对客户信用风险来进行评估。社交数据真实反映客户行为,能帮助银行更准确地判断客户的违约风险,最终降低银行的信用风险。 大数据促进信贷转型降低银行信用风险。新预算法的通过,地方债务的发行,地方投融资平台以及PPP模式,银行建立基于地方政府的大数据平台,在政府信用的保证下,降低信贷风险。对于贷款需求额度小,无抵押品的小微企业,充分利用大数据的数据挖掘技术,获取企业纳税凭证、交易结算、信用记录等数据,在进一步分析的基础上推出适合

6、企业的信贷产品。国内目前,光大银行推出大数据在信贷方面的实践。围绕着风险管理,光大银行全面打造“风险预警平台”,该平台利用互联网大数据挖掘技术、文本数据分析技术以及风险欺诈数据挖掘模型技术,将网络舆情、监管信息与企业账务流水、财务报表数据进行关联分析,通过事件驱动覆盖客户信用风险、账户风险、财务风险、关联风险、声誉风险、经营风险等风险事前预警。在单一客户预警的基础上,还深度挖掘企业与关联企业、企业与关联个人、个人与关联个人之间的关系,使认定的风险预警信号得以传导给与客户相关联的其他客户,更为高效的发现风险,为银行贷后风险管理构建起一道强有力的大数据信息屏障。 透支额度是信用卡风险管理的重要方

7、面。银行通过运用大数据,结合实时、历史数据进行全局分析,每天评估客户的行为,并对客户风险等级进行动态调整,实现对客户授信的精细化管理。银行信用卡中心借助大数据分析技术每天评估客户的行为,并对客户的信用额度随时进行调整。大数据将帮助金融和银行卡产业提升事后、事中、事前的风险管理和防控能力,减少甚至消除损失机会。 本文也整合了大数据在国内银行风险管理方面的实例:民生银行将数据挖掘技术应用于高端客户流失风险预测研究中,利用逻辑回归与决策树分类技术构建了客户流失预测模型以预测客户流失的可能性,将客户按照流失可能性的从高到低进行排序,从而帮助客户经理把握流失挽回工作的轻重缓急程度。此外,民生银行还按流

8、失客户的分布情况进行多类别细分, 对潜在流失客户制订适当的挽留策略,最终将数据挖掘结果应用于其管理信息体系中。 针对银行信用卡业务无抵押、风险性较其它信贷业务高的特点,广东发展银行采用数据挖掘与分析技术加强风险控制机制。广东发展银行引入申请计分机制,根据客户资料信息,建立数据挖掘模型对信用卡新申请客户或已有客户进行信用评分,根据信用评分结果可以初步对客户信用分析进行评估,识别客户是优质客户还是高风险客户。最终减少了审批人手压力和审核时间,提升了批核新卡的效率。此外,广东发展银行还引入行为计分机制,对每个客户的行为、消费模式和还款数据进行跟踪和监控,根据建立的数据挖掘模型结果,对客户信贷额度进

9、行智能调整,同时还能寻找到高增值客户,对这类客户推广相应的新产品和服务。 招商银行采用SAS 的Enterprise Miner 模块建立个人贷款评分卡模型。在建立模型过程中,建立了统一的评分卡监测报表,并根据评分卡使用情况对评分卡模型进行相应调整,从而实现综合评价客户信用风险。 为实现业务数据的集中整合,提升业务效率,中信银行引入Greenplum 数据仓库解决方案,建立数据库营销平台。结合实时、历史数据,中信银行进行全局数据挖掘分析,建立统一的客户视图,更有针对性地开展营销活动。根据建立的数据挖掘模型,风险管理部门每天评估客户的行为,并对客户的信用额度在同一天进行调整,从而减少了信用卡不良贷款比率。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服