ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:170KB ,
资源ID:4761346      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4761346.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(非线形规划讲稿.docx)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

非线形规划讲稿.docx

1、一、基本概念 二、一维搜索 由于线性规划的目标函数为线性函数,可行域为凸集,因而求出的最优解就是整个可行域上的全局最优解。非线性规划却不然,有时求出的某个解虽是一部分可行域上的极值点,但并不一定是整个可行域上的全局最优解。 对于非线性规划模型(NP),可以采用迭代方法求它的最优解。迭代方法的基本思想是:从一个选定的初始点出发,按照某一特定的迭代规则产生一个点列,使得当是有穷点列时,其最后一个点是(NP)的最优解;当是无穷点列时,它有极限点,并且其极限点是(NP)的最优解。 0° 选取初始点,令。 1° 构造搜索方向,依照一定规则,构造在点处关于的可行下降方向作为搜索方向。

2、2° 寻求搜索步长。以为起点沿搜索方向寻求适当的步长,使目标函数值有某种意义的下降。 3° 求出下一个迭代点。按迭代格式(1)求出 。 若已满足某种终止条件,停止迭代。 4° 以代替,回到1°步。 无约束问题 2.1 一维搜索方法 当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。一维搜索的方法很多,常用的有:(1)试探法(“成功—失败”,斐波那契法,0.618法等);插值法(抛物线插值法,三次插值法等);(3)微积分中的求根法(切线法,二分法等)。 考虑一维极小化问题

3、 (2) 若是区间上的下单峰函数,我们介绍通过不断地缩短的长度,来搜索得(2)的近似最优解的两个方法。 为了缩短区间,逐步搜索得(2)的最优解的近似值,我们可以采用以下途径:在中任取两个关于是对称的点和(不妨设,并把它们叫做搜索点),计算和并比较它们的大小。对于单峰函数,若,则必有,因而是缩短了的单峰区间;若,则有,故是缩短了的单峰区间;若,则和都是缩短了的单峰。因此通过两个搜索点处目标函数值大小的比较,总可以获得缩短了的单峰区间。对于新的单峰区间重复上述做法,显然又可获得更短的单峰区间。如此进行,在单峰区间缩短到充分

4、小时,我们可以取最后的搜索点作为(2)最优解的近似值。 三、无约束极值 无约束极值问题可表述为 (5) 求解问题(5)的迭代法大体上分为两种:一是用到函数的一阶导数或二阶导数,称为解析法。另一是仅用到函数值,称为直接法。 2.3.1 解析法 2.3.1.1 梯度法(最速下降法) 对基本迭代格式 (6) 我们总是考虑从点出发沿哪一个方向,使目标函数下降得最快。微积分的知识告诉我们,点的负梯度

5、方向 , 是从点出发使下降最快的方向。为此,称负梯度方向为在点处的最速下降方向。 按基本迭代格式(6),每一轮从点出发沿最速下降方向作一维搜索,来建立求解无约束极值问题的方法,称之为最速下降法。 这个方法的特点是,每轮的搜索方向都是目标函数在当前点下降最快的方向。同时,用或作为停止条件。其具体步骤如下: 1°选取初始数据。选取初始点,给定终止误差,令。 2°求梯度向量。计算, 若,停止迭代,输出。否则,进行3°。 3° 构造负梯度方向。取 . 4° 进行一维搜索。求,使得 令转2°。 例4 用最速下降法求解无约束非线性规划问题

6、 其中,要求选取初始点,终止误差。 解:(i) 编写M文件detaf.m如下 function [f,df]=detaf(x); f=x(1)^2+25*x(2)^2; df(1)=2*x(1); df(2)=50*x(2); (ii)编写M文件zuisu.m clc x=[2;2]; [f0,g]=detaf(x); while norm(g)>0.000001 p=-g'/norm(g); t=1.0;f=detaf(x+t*p); while f>f0 t=t/2;f=detaf(x+t*p); end x

7、x+t*p [f0,g]=detaf(x) end 2.3.1.2 Newton法 考虑目标函数在点处的二次逼近式 假定Hesse阵 正定。 由于正定,函数的稳定点是的最小点。为求此最小点,令 , 即可解得 . 对照基本迭代格式(1),可知从点出发沿搜索方向。 并取步长即可得的最小点。通常,把方向叫做从点出发的Newton方向。从一初始点开始,每一轮从当前迭代点出发,沿Newton方向并取步长为1的求解方法,称之为Newton法。其具体步骤如下: 1°选取初始数据。选取初始点,给定终止误差,令。 2°求梯度向量。计算,若,停止迭代,输出。否则,进

8、行3°。 3°构造Newton方向。计算,取 . 4° 求下一迭代点。令,转2°。 例5 用Newton法求解, 选取,。 解:(i) 编写M文件nwfun.m如下: function [f,df,d2f]=nwfun(x); f=x(1)^4+25*x(2)^4+x(1)^2*x(2)^2; df(1)=4*x(1)^3+2*x(1)*x(2)^2; df(2)=100*x(2)^3+2*x(1)^2*x(2); d2f(1,1)=12*x(1)^2+2*x(2)^2; d2f(1,2)=4*x(1)*x(2); d2f(2,1)=d

9、2f(1,2); d2f(2,2)=300*x(2)^2+4*x(1)*x(2); (ii)编写M文件: clc x=[2;2]; [f0,g1,g2]=nwfun(x) while norm(g1)>0.00001 %dead loop,for i=1:3 p=-inv(g2)*g1',p=p/norm(p) t=1.0,f=detaf(x+t*p) while f>f0 t=t/2,f=detaf(x+t*p), end x=x+t*p [f0,g1,g2]=nwfun(x) end 如果目标函数是非二次函数,一

10、般地说,用Newton法通过有限轮迭代并不能保证可求得其最优解。 Newton法的优点是收敛速度快;缺点是有时不好用而需采取改进措施,此外,当维数较高时,计算的工作量很大。 §3 约束极值问题 带有约束条件的极值问题称为约束极值问题,也叫约束规划问题。 求解约束极值问题要比求解无约束极值问题困难得多。为了简化其优化工作,可采用以下方法:将约束问题化为无约束问题;将非线性规划问题化为线性规划问题,以及能将复杂问题变换为较简单问题的其它方法。 3.1 二次规划 若某非线性规划的目标函数为自变量的二次函数,约束条件又全是线性的,就称这种规划为二次规划。 Matlab中二次规划的数

11、学模型可表述如下: 这里是实对称矩阵,是列向量,是相应维数的矩阵。 Matlab中求解二次规划的命令是 [X,FVAL]= QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0,OPTIONS) X的返回值是向量,FVAL的返回值是目标函数在X处的值。(具体细节可以参看在Matlab指令中运行help quadprog后的帮助)。 例8 求解二次规划 解 编写如下程序: h=[4,-4;-4,8]; f=[-6;-3]; a=[1,1;4,1]; b=[3;9]; [x,value]=quadprog(h,f,a,b,[],

12、[],zeros(2,1)) 求得 。 3.2 罚函数法 利用罚函数法,可将非线性规划问题的求解,转化为求解一系列无约束极值问题,因而也称这种方法为序列无约束最小化技术,简记为 SUMT (Sequential Unconstrained Minimization Technique)。 罚函数法求解非线性规划问题的思想是,利用问题中的约束函数作出适当的罚函数,由此构造出带参数的增广目标函数,把问题转化为无约束非线性规划问题。主要有两种形式,一种叫外罚函数法,另一种叫内罚函数法,下面介绍外罚函数法。 考虑如下问题: s.t. 取一个充分大的数 ,构造函数

13、 (或 这里 ,,,为适当的行向量,Matlab中可以直接利用 和 函数。)则以增广目标函数为目标函数的无约束极值问题 的最优解也是原问题的最优解。 例9 求下列非线性规划 解 (i)编写 M 文件 test.m function g=test(x); M=50000; f=x(1)^2+x(2)^2+8; g=f-M*min(x(1),0)-M*min(x(2),0)-M*min(x(1)^2-x(2),0)... +M*abs(-x(1)-x(2)^2+2); (ii)在Matlab命令窗口输入 [x,y]=fminunc('test',ra

14、nd(2,1)) 即可求得问题的解。 §4 飞行管理问题 在约10,000m高空的某边长160km的正方形区域内,经常有若干架飞机作水平飞行。区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。当一架欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞。现假定条件如下: 1)不碰撞的标准为任意两架飞机的距离大于8km; 2)飞机飞行方向角调整的幅度不应超过30度; 3)所有飞机飞行速度均为每小时800km; 4)进入该区域的飞机在到达区域边缘时

15、与区域内飞机的距离应在60km以上; 5)最多需考虑6架飞机; 6)不必考虑飞机离开此区域后的状况。 请你对这个避免碰撞的飞行管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01度),要求飞机飞行方向角调整的幅度尽量小。 设该区域4个顶点的座标为(0,0),(160,0),(160,160),(0,160)。记录数据为: 飞机编号 横座标 纵座标 方向角(度) 1 150 140 243 2 85 85

16、 236 3 150 155 220.5 4 145 50 159 5 130 150 230 新进入 0 0 52 注:方向角指飞行方向与轴正向的夹角。 试根据实际应用背景对你的模型进行评价与推广。 提示: ,, 其中为飞机的总架数,为时刻第架飞机的坐标,分别表示第架飞机飞出正方形区域边界的时刻。这里 ,,; ,,; 其中为飞机的速度,分别为第架飞机的初始方向角和调整后的方向角。 令 其中, 则两架飞机不碰撞的条件是。 习题: 某工厂向用户提供发动机,按合同规定,其交货数量和日期是:第一季度末交40台,第二季末交60台,第三季末交80台。工厂的最大生产能力为每季100台,每季的生产费用是(元),此处为该季生产发动机的台数。若工厂生产的多,多余的发动机可移到下季向用户交货,这样,工厂就需支付存贮费,每台发动机每季的存贮费为4元。问该厂每季应生产多少台发动机,才能既满足交货合同,又使工厂所花费的费用最少(假定第一季度开始时发动机无存货)。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服