1、1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。它用表组织数据,采用ER数据模型。相似:它们都为数据挖掘提供了源数据,都是数据的组合。翻译结果重试抱歉,系统响应超时,请稍后再试 支持中文、英文免费在线翻译 支持网页翻译,在输入框输入网页地址即可 提供一键清空、复制功能、支持双语对照查看,使您体验更加流畅1.3 定义下列数据挖掘功能:特性化、区分、关联和相关分析、预测聚类和演变分析。使用你熟悉
2、的现实生活的数据库,给出每种数据挖掘功能的例子。答:特性化是一个目的类数据的一般特性或特性的汇总。例如,学生的特性可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特性涉及作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,尚有所修的课程的最大数量。 区分是将目的类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。最终的描述也许是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不
3、是。 关联是指发现关联规则,这些规则表达一起频繁发生在给定数据集的特性值的条件。例如,一个数据挖掘系统也许发现的关联规则为:major(X, “computing science”) owns(X, “personal computer”)support=12%, confidence=98% 其中,X 是一个表达学生的变量。这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。这个组一个学生拥有一台个人电脑的概率是98%(置信度,或拟定度)。 分类与预测不同,由于前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能
4、),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。它们的相似性是他们都是预测的工具:分类被用作预测目的数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值。 聚类分析的数据对象不考虑已知的类标号。对象根据最大花蕾内部的相似性、最小化类之间的相似性的原则进行聚类或分组。形成的每一簇可以被看作一个对象类。聚类也便于分类法组织形式,将观测组织成类分层结构,把类似的事件组织在一起。 数据演变分析描述和模型化随时间变化的对象的规律或趋势,尽管这也许涉及时间相关数据的特性化、区分、关联和相关分析、分类、或预测,这种分析的明确特性涉及时间序列
5、数据分析、序列或周期模式匹配、和基于相似性的数据分析2.3 假设给定的数据集的值已经分组为区间。区间和相应的频率如下。 年龄 频率 15 200 515 450 1520 300 2050 1500 5080 700 80110 44 计算数据的近似中位数值。 解答: 先鉴定中位数区间:N=200+450+300+1500+700+44=3194;N/2=1597 200+450+300=95015972450=950+1500; 2050 相应中位数区间。 median=32.97 岁。2.2 假定用于分析的数据包含属性age。数据元组的age 值(以递增序)是:13,15,16,16,19
6、,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70。答:(a) 该数据的均值是什么?中位数是什么?均值=(13+15+16+16+19+20+20+21+22+22+25+25+25+25+30+33+33+35+35+35+35+36+40+45+46+52+70)/27=29.96中位数应是第14个,即x14=25=Q2。(b) 该数据的众数是什么?讨论数据的峰(即双峰、三峰等)。这个数集的众数有两个:25 和35,发生在同样最高的频率处,因此是双峰众数。(c) 数据的中列数是什么?数据的中列数是最大数和最小
7、数的均值。即:midrange=(70+13)/2=41.5。(d) 你能(粗略地)找出数据的第一个四分位数(Q1)和第三个四分位数(Q3)吗?数据集的第一个四分位数应发生在25%处,即在(N+1)/4=(27+1)/4=7 处。所以:Q1=20。而第三个四分位数应发生在75%处,即在3(N+1)/4=21 处。所以:Q3=35(e) 给出数据的五数概括。一个数据集的分布的5 数概括由最小值、第一个四分位数、中位数、第三个四分位数、和最大值构成。它给出了分布形状良好的汇总+并且这些数据是:13、20、25、35、70。(f) 画出数据的盒图。 (g) 分位数分位数图与分位数图的不同之处是什么?
8、分位数图是一种用来展示数据值低于或等于在一个单变量分布中独立的变量的粗略比例。这样,他可以展示所有数的分位数信息,而为独立变量测得的值(纵轴)相对于它们的分位数(横轴)被描绘出来。但分位数分位数图用纵轴表达一种单变量分布的分位数,用横轴表达另一单变量分布的分位数。两个坐标轴显示它们的测量值相应分布的值域,且点按照两种分布分位数值展示。一条线(y=x)可画到图中+以增长图像的信息。落在该线以上的点表达在y 轴上显示的值的分布比x 轴的相应的等同分位数相应的值的分布高。反之,对落在该线以下的点则低。2.4假设医院检测随机选择的18个成年人年龄和身体脂肪数据,得到如下结果:(a)计算年龄和脂肪比例的
9、均值、中位数和标准差.年龄均值=(23+23+27+27+39+41+47+49+50+ 52+54+54+56+57+58+58+60+61)/18=836/18=46.44, 中位数= (50+52)/2=51, 标准差=方差的平方根=开根号( 1/n(Xi)2-1/n(Xi)2)=开根号 1/182970.44=12.85.脂肪比例均值=28.78, 中位数=30.7, 标准差= 8.99. (b)绘制年龄和脂肪比例的盒图(c)根据这两个属性,绘制散布图,各q-q图 q-q图 散布图(d)根据z-score 规范化来规范化这两个属性(P46)(e)计算相关系数(皮尔逊积矩系数). 这两个
10、变量是正相关还是负相关?ra,b=(ai-A)(bi-B)/NAB=((aibi)-NAB)/NAB=((aibi)-18*46.44*28.78)/18*12.85*8.99=0.82相关系数是0.82。变量呈正相关。3.3 使用习题2.4 给出的age 数据回答下列问题: (a) 使用分箱均值光滑对以上数据进行光滑,箱的深度为3。解释你的环节。 评述对于给定的数据,该技术的效果。 (b) 如何拟定数据中的离群点? (c) 对于数据光滑,尚有哪些其他方法? 解答: (a) 使用分箱均值光滑对以上数据进行光滑,箱的深度为3。解释你的环节。评述对于给定的数据,该技术的效果。 用箱深度为3 的分箱
11、均值光滑对以上数据进行光滑需要以下环节: 环节1:对数据排序。(由于数据已被排序,所以此时不需要该环节。) 环节2:将数据划分到大小为3 的等频箱中。 箱1:13,15,16 箱2:16,19,20 箱3:20,21,22 箱4:22,25,25 箱5:25,25,30 箱6:33,33,35 箱7:35,35,35 箱8:36,40,45 箱9:46,52,70 环节3:计算每个等频箱的算数均值。 环节4:用各箱计算出的算数均值替换每箱中的每个值。 箱1:44/3,44/3,44/3 箱2:55/3,55/3,55/3 箱3:21,21,21 箱4:24,24,24 箱5: 80/3 ,80
12、/3, 80/3 箱 6: 101/3,101/3, 101/3 箱7:35,35,35 箱8:121/3,121/3,121/3 箱9:56,56,56 (b) 如何拟定数据中的离群点? 聚类的方法可用来将相似的点提成组或“簇”,并检测离群点。落到簇的集外的值可以被视为离群点。作为选择,一种人机结合的检测可被采用,而计算机用一种事先决定的数据分布来区分也许的离群点。这些也许的离群点能被用人工轻松的检查,而不必检查整个数据集。 (c) 对于数据光滑,尚有哪些其他方法? 其它可用来数据光滑的方法涉及别的分箱光滑方法,如中位数光滑和箱边界光滑。作为选择,等宽箱可被用来执行任何分箱方式,其中每个箱中
13、的数据范围均是常量。除了分箱方法外,可以使用回归技术拟合成函数来光滑数据,如通过线性或多线性回归。分类技术也能被用来对概念分层,这是通过将低档概念上卷到高级概念来光滑数据。3.5 如下规范化方法的值域是什么?答:(a) min-max 规范化。值域是new_min, new_max。(b) z-score 规范化。值域是(old_minmean)/,(old_maxmean)/,总的来说,对于所有也许的数据集的值域是(,+)。(c) 小数定标规范化。值域是(1.0,1.0)。3.7 使用习题 2.4 给出的 age 数据,回答以下问题:(a) 使用 min-max 规范化将 age 值 35
14、变换到0.0,1.0区间。(b) 使用 z-score 规范化变换 age 值 35,其中 age 的标准差为 12.94 岁。(c) 使用小数定标规范化变换 age 值 35。(d) 对于给定的数据,你乐意使用哪种方法?陈述你的理由。解答:3.9 假设 12 个销售价格记录组已经排序如下:5,10,11,13,15,35,50,55,72,92,204,215。使用如下每种方法将其划提成三个箱。(a) 等频(等深)划分。(b) 等宽划分。 (c) 聚类。 解答:(a) 等频(等深)划分。bin15,10,11,13bin115,35,50,55bin1 72,91,204,215(b) 等宽
15、划分。每个区间的宽度是:(215-5)/3=70bin15,10,11,13,15,35,50,55,72bin191bin1204,215(c) 聚类。我们可以使用一种简朴的聚类技术:用 2 个最大的间隙将数据提成 3 个箱。bin15,10,11,13,15bin135,50,55,72,91bin1204,2153.11 使用习题 2.4 给出的 age 数据,(a) 画出一个等宽为 10 的等宽直方图;(b) 为如下每种抽样技术勾画例子:SRSWOR,SRSWR ,聚类抽样,分层 抽样。使用大小为 5 的样本和层“青年”,“中年”和“老年”。解答:(a) 画出一个等宽为 10 的等宽直
16、方图;87654321015 25 35 45 55 65(b) 为如下每种抽样技术勾画例子:SRSWOR,SRSWR ,聚类抽样,分层 抽样。使用大小为 5 的样本和层“青年”,“中年”和“老年”。元组:T 113T 1022T 1935T 215T 1125T 2035T 316T 1225T 2135T 416T 1325T 2236T 519T 1425T 2340T 620T 1530T 2445T 720T 1633T 2546T 821T 1733T 2652T 922T 1835T 2770SRSWOR 和 SRSWR:不是同次的随机抽样结果可以不同,但前者因无放回所以不能有相
17、同的元组。SRSWOR(n=5)SRSWR(n=5)T 416T 720T 620T 720T 1022T 2035T1125T 2135T 2652T 2546聚类抽样:设起始聚类共有 6 类,可抽其中的 m 类。Sample1Sample2Sample3Sample4Sample5Sample6T 113T620T 1125T 1633T 2135T 2652T 215T720T 1225T 1733T 2236T 2770T 316T821T 1325T 1835T 2340T 416T922T 1425T 1935T 2445T 519T 1022T 1530T 2035T 2546S
18、ample2 Sample5T 620T2135T 720T2236T 821T2340T 922T2445T 1022T2546T113youngT 1022youngT 1935middle ageT215youngT 1125youngT 2035middle ageT316youngT 1225youngT 2135middle ageT416youngT 1325youngT 2236middle ageT519youngT 1425youngT 2340middle ageT620youngT 1530middle ageT 2445middle ageT720youngT 163
19、3middle ageT 2546middle ageT821youngT 1733middle ageT 2652middle ageT922youngT 1835middle ageT 2770seniorT416youngT 1225youngT 1733middle ageT 2546middle ageT 2770Senio r4.3 假定数据仓库包含三维:time,doctor和patient;和两个度量:count和charge;其中,charge是医生对病人一次诊治的收费。(a)列举三种流行的数据仓库建模模式答:三类模式一般用于建模数据仓库架构的星形模型,雪花模型和事实星座模型
20、。(b)使用(a)列举的模式之一,画出上面的数据仓库的模式图 数据仓库的星形模型(C)由基本方体day,doctor,patient开始,为列出2023年每位医生的收费总数,应当执行哪些OLAP操作?沿课程(course)维从course_id“上卷”到department。l 沿时间(time)维从 day “上卷”到 year。l 取 time=2023,对维 time作“切片” 操作l 沿病人(patient)维从 个别病人 “上卷”到 所有病人。(d)为得到同样结果,写一个SQL查询。假定数据存放在关系数据库中,其模式为fee(day,month,year,doctor,hospita
21、l,patient,count,charge)。答:SQL查询语句如下:select doctor, SUM(charge) from feewhere year=2023group by doctor4.4 假定 BigUniversity 的数据仓库包含如下 4 个维:student(student_name,area_id , major, status, university) , course(course_name, department) , semester(semester, year) 和 instructor(dept, rank);2 个度量:count 和 avg_g
22、rade。 在最低概念层, 度量 avg_grade 存放学生的实际 课程成绩。在较高概念层, avg_grade 存放给定组合的平均成绩。(a) 为该数据仓库画出雪花形模式图。(b) 由 基 本 方 体 student, course, semester, instructor 开 始 , 为 列 出 BigUniversity 每个学生的 CS 课程的平均成绩,应当使用哪些特殊 的 OLAP 操作。(c) 假如每维有 5 层(涉及 all),如“studentmajorstatusuniversityall ”, 该立方体包含多少方体?解答:a) 为该数据仓库画出雪花形模式图。雪花模式如图
23、所示。b) 由 基 本 方 体 student, course, semester, instructor 开 始 , 为 列 出 BigUniversity 每个学生的 CS 课程的平均成绩,应当使用哪些特殊的 OLAP 操作。这些特殊的联机分析解决(OLAP )操作有:i.沿课程(course)维从 course_id “上卷”到 department。ii.沿学生(student)维从 student_id “上卷”到 university 。iii. 取 department= “CS ”和 university= “Big University ”,沿课程(course)维和学生(s
24、tudent)维切片。iv.沿学生(student)维从 university 下钻到 student_name。c) 假如每维有 5 层(涉及 all),如“studentmajorstatusuniversity 1. 所以,买 hot dogs不是独立于买humburgers。两者存在正相关关系8.1 简述决策树分类的重要环节。8.5 给定一个具有50个属性(每个属性包含100个不同值)的5GB的数据集,而你的台式机有512M内存。简述对这种大型数据集构造决策树的一种有效算法。通过粗略地计算机主存的使用说明你的答案是对的的。这个问题我们将使用雨林算法。假设有C类标签。最需要的内存将是av
25、c-set为根的树。计算avc-set的根节点,我们扫描一次数据库,构建avc-list每50个属性。每一个avc-list的尺寸是100C,avc-set的总大小是100C50,对于合理的C将很容易适应512 MB内存,计算其他avc-sets也是使用类似的方法,但他们将较小,由于很少属性可用。在并行计算时,我们可以通过计算avc-set节点来减少同一水平上的扫描次数,使用这种每节点小avc-sets的方法,我们或许可以适应内存的水平。8.7下表由雇员数据库的训练数据组成。数据已泛化。例如:age “31.35”表达年龄在31-35之间。对于给定的行,count表达department,status,age和salary在该行具有给定值的元组数。设status 是类标号属性。(a)如何修改基本决策树算法,以便考虑每个广义数据元组(即每一行)的count?(b)使用修改的算法,构造给定数据的决策树。 (c)给定一个数据元组,它在属性department,age和salary的值分别为“systems”,“26.30”,和“46K. 50K”。该元组status的朴素贝叶斯分类是什么?9.2支持向量机(SVM)是一种具有高准确率的分类方法。然而,在使用大型数据元组集进行训练时,SVM的解决速度很慢。讨论如何克服这一困难,并为大型数据集有效的SVM算法。
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100