ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:732.15KB ,
资源ID:4750728      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4750728.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(机器视觉和图像处理.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

机器视觉和图像处理.doc

1、移动机器人使用双目视觉系统对物体进行3D坐标检测 (Guo-Shing Huang, Ci-En Cheng) 摘要:这篇论文主要讨论了智能机器人双目视觉系统,它利用了图像处理原理和边缘检测算法,这样可以更加清晰的得到物体的边缘轮廓。利用随机测圆法和Hough变换的随机线条可以找到指定的对象。我们探讨了图像识别应用技术。通过机器人定位算法,在双目视觉坐标系下,可以快速而精确的定位目标。通过两个网路摄像机的校订,我们可以得到内部和外部参数,目标物体固定位置的3D空间坐标可以由双目视觉三角法精确计算得到。物体和机器人之间的距离可以有坐标变换系统得到。经由三角几何理论检测,系统误差在允许的范围内

2、同时可以得到期望的精度和可靠性。 一、引文 我们提出了机器人双目视觉系统应用坐标,对人眼进行仿真,做到智能检测应用。因此,这样的系统可以在机械臂的作用下精确的捕捉目标的位置,而不需要大数量的传感器。 双目视觉系统可以通过左右相机捕捉的图像找到共同的特征点。通过形态学的处理,物体和相机之间的距离可以精确的计算到。物体的三维坐标可以使用相机参数表示。因此,物体可以由机械臂抓取。 部分2详细的介绍了餐饮服务机器人的外观和双目视觉硬件结构。 部分3描述了寻找特征点的图像处理过程。 部分4讨论并图示了特征点转换为三维坐标的过程。 部分5和6分别给出了实验结果和结论。 二、双目视觉系统的

3、结构 图1 BVS硬件结构 双目视觉系统硬件结构包括2个相机,安装在机器人的头部。由计算机组成的操作系统的结构如下。 图2 BVS和机械臂系统结构 三、图像处理 选取现实中使用的目标物体,包括易拉罐,聚酯塑料瓶,杯子 图3 目标物体检测 所选目标物体具有不同的颜色,形状,找到它们的中心点,左右两个特征点,作为筛选目标物体的依据。 A 形态学 选取一个合适的阈值,便可以将目标物体从环境中分离出来。通过左右相机所得到的相机图像利用二进制系统表示以及HSV颜色模块,可以得到一个合适的阈值处理过程。 图4 图像处理 图像经过腐蚀和膨胀可以消除图像噪声。 将RGB

4、颜色模块转换到HSV颜色模块,转换方程如下: B、物体识别 通过灰度等级的突变,如果在一阶导数形成的高峰超过阈值之后,将会呈现测点形状。二阶微分是通过零交叉概念。对于函数f(x,y)沿着x轴的微分为 对于x轴的微分进过平方和替换可以得到 同样的对于y轴的微分类似。便可以得到 通过Hough 变换,我们可以将x-y的坐标转为r-θ空间的坐标,这就是Sandy-Method空间角检测线方法。 图 5 x-y坐标空间与r-θ空间坐标的关系 可以得 中心圆方程包括两个变量和一个可变的半径,需要进行累计数组测量。将每一个边缘点的位置坐标代入方程可以得到半径值。当所有的

5、边缘点转换完毕的时候,通过设定的阈值和累积数组变换,便可以知道是否得到一个大致的图像。 图6 三维累积数组 假设在图像中有K个侧点,为了得到对应于二维坐标的半径值r,将侧点代入a*b大小的圆中。检测每一小的格子,当数据超过阈值的时候,便可以得到下图 图7 数字圆 C 寻找特征点 寻找特征点,对数据进行成批处理,然后得到目标点。对数据进行成批处理,是为了降低特征点的影响和复杂性,增加了特征点的精度。寻找的特征点如图所示,特征点在图8(a),(b)中以两个红色表示出来.图8(c)(d)表示使用Hough变换寻找图像中椭圆的中心点,因此便可以得到中心点。同样的特征点以红色表示出来。

6、 图8 特征点 四、定位坐标 A 相机坐标 图9是坐标系统的变换。左右图像的特征点是像素点,通过内部参数矩阵,像素点可以转换为相机坐标。右相机是相机坐标的原点,对于理想的针孔摄影,实像可以投影到像板上,这是远视投影。这就是三维空间坐标转换为二维像素坐标的转换办法。 图9 双目视觉几何关系图解 图10所示,图像中心Oc的三维坐标是相机坐标系统,3D空间点对应相机点。以点P=(Xc,,Yc,Zc)表示。Zc是相机的光轴,F是Oc到像板之间的距离。Q是图像中心的焦点。图像面板上p点坐标是P的投影。图像坐标可以表示为P=( )。 像板上投影点的坐标可以用如下等式表示 相机坐

7、标的三维坐标可以表示为等式 λ是比例因子,可以随着图像分辨率的大小而改变。 图10 透视投影几何图解 B 相机参数 实际情况下,相机的投影在像板上并不是理想的投影。因此,我们必须对相机元素进行校正。由于透镜的放射影响,图像的中心坐标变成()。,相机因此,相机Xc轴和Yc轴的系数是不等的,需要分开考虑。可以如下表示 r是偏移系数代表了X轴和Y轴相对于直角的偏移角度。r值近似为0.整个内部参数矩阵表示如下。 五、实验结果 A 相机参数校定 在整个研究中,双目视觉调整使用的是10*7的黑色象棋盘,每一个方块的尺寸是25.5*25.5mm^2.相机的固有参数可以由O

8、penCV得到。 图11 10*7的黑色象棋盘 图示11表示相机通过校正盘求解内部和外部的参数矩阵,内部的参数矩阵包括成像中心和焦距长度,外部参数包括相对旋转和变换矩阵。 左相机参数,内部参数: 外部参数,变换矩阵: 旋转矩阵: 右相机参数,内部参数 外部参数,变换矩阵 旋转矩阵 B 测量结果 文章以易拉罐,杯子等为对象,它们具有同样的形状不同的颜色,不同的形状同样的颜色,不同的形状不同的颜色等特征。 带有内部和外部参数的相机图像坐标,我们可以利用三维重建原理,重建三维世界坐标。图11,在每一个轴线方向定义了相机坐标系统,并将右边的相机作为相

9、机坐标系统的原点。成像工具使用的是罗马科技公司的QuickCam C920网络相机型号。它作为视觉感知装置和USB接口相连,图像的捕捉速度可以达到30帧每秒,一个自动的模块包括数字放大镜,HD CCD传感器。 图11 相机坐标轴的定义 使用Hough测量和HSV颜色模块,这样相似目标的识别,例如易拉罐瓶,塑料瓶,杯子,可口可乐罐等因为形状而很容易混淆的物体,同时也可以检测这些物品的颜色来判定。 进过对测得的结果使用统计学的知识进行分析可以发现,左右特征点越是远离成像中心,所得到的误差越大,这是因为相机镜头的是凸面镜。另一方面,从测量结果可以得到一个精确的景深。 图12易拉罐的识别和特征点的寻找

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服