ImageVerifierCode 换一换
格式:PPTX , 页数:62 ,大小:1.79MB ,
资源ID:4739164      下载积分:14 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4739164.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(242抛物线的简单几何性质3110203.pptx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

242抛物线的简单几何性质3110203.pptx

1、2.4.22.4.2抛物线抛物线的简单几的简单几何性质何性质(3)(3)判断直线与双曲线位置关系的操作程序判断直线与双曲线位置关系的操作程序把直线方程代入双曲线方程把直线方程代入双曲线方程得到一元一次方程得到一元一次方程得到一元二次方程得到一元二次方程直线与双曲线的直线与双曲线的渐进线平行渐进线平行相交(一个交点)相交(一个交点)计计 算算 判判 别别 式式0=00=00=00相交相交相切相切相离相离132过点且与抛物线只有一个过点且与抛物线只有一个公共点的直线的条数公共点的直线的条数过点过点1过点过点2过点过点33条条2条条1条条抛物线焦点弦抛物线焦点弦(x1,y1)(x2,y2)xyBA探

2、究一:弦长问题探究一:弦长问题探究二:角度(圆与直线位置关系)问题探究二:角度(圆与直线位置关系)问题xyBAxyBAQxyBAQ QxyBAxyBA(2)(3)(4)(4)xyBAQ探究二:角度(圆与直线位置关系)问题探究二:角度(圆与直线位置关系)问题xyBAQ探究二:角度(圆与直线位置关系)问题探究二:角度(圆与直线位置关系)问题xyBAQ探究二:角度问题探究二:角度问题PQxyBAP探究二:角度问题探究二:角度问题xyBA探究二:角度问题探究二:角度问题探究三:定值问题探究三:定值问题(x1,y1)(x2,y2)xyBA探究三:定值问题探究三:定值问题xyBA探究四:最值问题探究四:最

3、值问题0 xy小结:小结:(x1,y1)(x2,y2)xyBA(1)转化的思想;)转化的思想;(2)定义的理解)定义的理解.yxFAB(1)(1)以以ABAB为直径的圆和这抛物线的准线相切为直径的圆和这抛物线的准线相切焦点弦的几个结论焦点弦的几个结论例一、例一、点点P在抛物线在抛物线y2=x上,定点上,定点A(3,0),求求|PA|的最小值。的最小值。法一、目标函数法法一、目标函数法法二、判别式法法二、判别式法过作同心圆过作同心圆,当圆与抛物线相切当圆与抛物线相切时时,到点的距离最小到点的距离最小,设为设为r练习:练习:若若P为抛物线为抛物线y2=x上一动点,上一动点,Q为圆(为圆(x-3)2

4、y2=1 上一上一动点,求动点,求|PQ|的最小值的最小值例二、例二、设设P P为抛物线为抛物线y=xy=x2 2上的一动点,求上的一动点,求P P点到直线点到直线L:3x-4y-6=0L:3x-4y-6=0的距离的最小值。的距离的最小值。法一、目标函数法法一、目标函数法y=x2P(x,y)xyo法二、判别式法法二、判别式法解:当解:当L L平移到与抛物线平移到与抛物线y=xy=x2 2只有一个公共点时只有一个公共点时,设此时的设此时的直线为直线为L1L1,其方程为,其方程为3x-4y-b=03x-4y-b=0。则。则L L与与L1L1的距离即为所求。的距离即为所求。3x-4y+b=0 y=

5、x2 代入代入可得:可得:4x2-3x+b=0 =(-3)2-44b=0 可得可得 Ly=x2xyoL1练习:练习:已知抛物线已知抛物线y y2 2=4x=4x,以抛物线上两点,以抛物线上两点A(4,4)A(4,4)、B(1,-2)B(1,-2)的连线为底边的连线为底边ABPABP,其顶点,其顶点P P在抛物线的弧在抛物线的弧ABAB上运动,求:上运动,求:ABPABP的最大面积的最大面积及此时点及此时点P P的坐标。的坐标。A(4,4)B(1,-2)xyo分析分析1 1:动点在弧动点在弧ABAB上运动,可以设上运动,可以设出点出点P P的坐标,只要求出点的坐标,只要求出点P P到线段到线段A

6、BAB所在直线所在直线ABAB的最大距离即为点的最大距离即为点P P到到线段线段ABAB的最大距离,也就求出了的最大距离,也就求出了ABPABP的最大面积。的最大面积。分析分析2:我们可以连接我们可以连接ABAB,作平行,作平行ABAB的直线的直线L L与抛物线相切,求出直与抛物线相切,求出直线线L L的方程,即可求出直线的方程,即可求出直线L L与与ABAB间的距离,从而求出间的距离,从而求出ABPABP面积的面积的最大值和点最大值和点P P的坐标。的坐标。LP小结:小结:对于抛物线上一点到定点或者是定直线的最值对于抛物线上一点到定点或者是定直线的最值问题,可以由两点间距离公式或者点到直线的

7、问题,可以由两点间距离公式或者点到直线的距离公式建立目标函数,再用函数最值的方法距离公式建立目标函数,再用函数最值的方法求解;也可以通过一些几何性质和已知条件构求解;也可以通过一些几何性质和已知条件构造一个含有某一变量的一元二次方程,通过判造一个含有某一变量的一元二次方程,通过判断方程的判别式寻求题目的答案。断方程的判别式寻求题目的答案。已知定点已知定点M M(3 3,2 2),),F F是抛物线是抛物线y y2 2=2x=2x的焦点,在的焦点,在此抛物线上求一点此抛物线上求一点P P,使,使|PM|+|PF|PM|+|PF|取得最小值,取得最小值,求点求点P P的坐标的坐标抛物线上的点到焦点

8、的距离抛物线上的点到焦点的距离与到准线的距离相等。与到准线的距离相等。即即|PF|=|PN|PM|+|PF|=|PM|+|PN|当当 M M、P P、N N三点共三点共线时距离之和最小。线时距离之和最小。FM例三、例三、如图,由抛物线的定义:如图,由抛物线的定义:分析:分析:FMPN解:解:如图所示如图所示|PF|=|PN|即:即:|PF|+|PM|=|PN|+|PM|PM|+|PN|PM|+|PN|=|PM|+|PF|又又点点P的纵坐标等于点的纵坐标等于点M的纵坐标,即的纵坐标,即y=2所以,点所以,点P的坐标为(的坐标为(2,2)在抛物线在抛物线 y2=2x上任取一点上任取一点P(x,y)

9、作作PN准线准线L,作,作MN L,MN交抛物线于交抛物线于P(x,y)由抛物线的定义得:由抛物线的定义得:当当P和和P重合时,即重合时,即PNL,N、P、M三点共线,三点共线,FMPNPNyxOFAPyxOFAPQ练习、练习、P为抛物线为抛物线x2=4y上的一动点,定点上的一动点,定点A(8,7),求求P到到x轴与到点轴与到点A的距离之和的最小值的距离之和的最小值所求所求p p点点位置位置9几何法,运用数形结合的思想,利用抛物线的定几何法,运用数形结合的思想,利用抛物线的定义,将到焦点的距离转化为到准线的距离,将图义,将到焦点的距离转化为到准线的距离,将图形局部进行转化,使最值问题得以求解

10、形局部进行转化,使最值问题得以求解小结:小结:练习:练习:2、求抛物线、求抛物线y2=64x上的点到直线上的点到直线4x+3y+46=0 距离最小值,并求取得最小值距离最小值,并求取得最小值时抛物线上的点的坐标时抛物线上的点的坐标课堂小结:课堂小结:在解析几何中,常见的最值问题的求解方法主要在解析几何中,常见的最值问题的求解方法主要有以下几种:有以下几种:函数法:函数法:选择恰当的变量,根据题意建立目标函数,选择恰当的变量,根据题意建立目标函数,再探求目标函数的最值方法。再探求目标函数的最值方法。几何法:几何法:利用数形结合的思想,借助于几何图形中的利用数形结合的思想,借助于几何图形中的一些特

11、点,将图形局部进行转化,使最值问一些特点,将图形局部进行转化,使最值问题得以求解。题得以求解。判别式法:判别式法:利用已知条件构造一个含有某一变量的一利用已知条件构造一个含有某一变量的一元二次方程,通过判断方程的判别式寻求元二次方程,通过判断方程的判别式寻求题目的答案。题目的答案。抛物线中的定点和定值问题在平面直角坐标系在平面直角坐标系xOy中,抛物线中,抛物线y=x2上异于坐标原点上异于坐标原点O的两不同动点的两不同动点A、B满足满足AOBO(如图所示)(如图所示).(1)求)求AOB的重心的重心G(即三角形三条中线的交点)(即三角形三条中线的交点)的轨迹方程;的轨迹方程;(2)AOB的面积

12、是否存在最小值?若存在,的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由请求出最小值;若不存在,请说明理由.例例2、斜率为、斜率为1的直线的直线 经过抛物线经过抛物线 的的焦点焦点F,且与抛物线相交于,且与抛物线相交于A,B两点,求线两点,求线段段AB的长。的长。例、已知过抛物线例、已知过抛物线 的焦点的焦点F的的直线交抛物线于直线交抛物线于 两点。两点。(1)是否为定值?是否为定值?呢?呢?(2)是否为定值?是否为定值?xOyFAB这一结论非常奇妙这一结论非常奇妙,变中有不变变中有不变,动中有不动动中有不动.xyBAO例例A,B是抛物线是抛物线 上的两点,上的两点,满足满足 (O为坐标原点):为坐标原点):(1)求求证证:A、B两两点点的的横横坐坐标标之之积积与与纵纵坐坐标标之积均为定值;之积均为定值;(2)直线)直线AB经过一定点;经过一定点;

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服