ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:482.99KB ,
资源ID:4739075      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4739075.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(SPSS软件聚类分析过程的图文解释及结果的全面分析.docx)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

SPSS软件聚类分析过程的图文解释及结果的全面分析.docx

1、SPSS软件聚类分析过程的图文解释及结果的全面分析 SPSS聚类分析过程 聚类的主要过程一般可分为如下四个步骤: 1.数据预处理(标准化) 2.构造关系矩阵(亲疏关系的描述) 3.聚类(根据不同方法进行分类) 4.确定最佳分类(类别数) SPSS软件聚类步骤 1. 数据预处理(标准化) →Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择 从Transform Values框中点击向下箭头,此为标准化方法,将出现如下可选项,从中选一即可: 标准化方法解释:None:不进

2、行标准化,这是系统默认值;Z Scores:标准化变换;Range –1 to 1:极差标准化变换(作用:变换后的数据均值为0,极差为1,且|xij*|<1,消去了量纲的影响;在以后的分析计算中可以减少误差的产生。);Range 0 to 1(极差正规化变换 / 规格化变换); 2. 构造关系矩阵 在SPSS中如何选择测度(相似性统计量): →Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择 常用测度(选项说明):Euclidean distance:欧氏距离(二阶Minkowski距离)

3、用途:聚类分析中用得最广泛的距离;Squared Eucidean distance:平方欧氏距离;Cosine:夹角余弦(相似性测度;Pearson correlation:皮尔逊相关系数; 3. 选择聚类方法 SPSS中如何选择系统聚类法 常用系统聚类方法 a)Between-groups linkage 组间平均距离连接法 方法简述:合并两类的结果使所有的两两项对之间的平均距离最小。(项对的两成员分属不同类)特点:非最大距离,也非最小距离 b)Within-groups linkage 组内平均连接法 方法简述:两类合并为一类后,合并后的类中所有项之间的平均距离最小 C

4、Nearest neighbor 最近邻法(最短距离法) 方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法 d)Furthest neighbor 最远邻法(最长距离法) 方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法 e)Centroid clustering 重心聚类法 方法简述:两类间的距离定义为两类重心之间的距离,对样品分类而言,每一类中心就是属于该类样品的均值 特点:该距离随聚类地进行不断缩小。该法的谱系树状图很难跟踪,且符号改变频繁,计算较烦。 f)Median clustering 中位数法 方法简述:两类间的距离既

5、不采用两类间的最近距离,也不采用最远距离,而采用介于两者间的距离 特点:图形将出现递转,谱系树状图很难跟踪,因而这个方法几乎不被人们采用。 g)Ward’s method 离差平方和法 方法简述:基于方差分析思想,如果分类合理,则同类样品间离差平方和应当较小,类与类间离差平方和应当较大 特点:实际应用中分类效果较好,应用较广;要求样品间的距离必须是欧氏距离。 谱系分类的确定 经过系统聚类法处理后,得到聚类树状谱系图,Demirmen(1972)提出了应根据研究的目的来确定适当的分类方法,并提出了一些根据谱系图来分类的准则: A. 任何类都必须在临近各类中是突出的,

6、即各类重心间距离必须极大 B. 确定的类中,各类所包含的元素都不要过分地多 C. 分类的数目必须符合实用目的 D. 若采用几种不同的聚类方法处理,则在各自的聚类图中应发现相同的类 实例分析 SPSS19.0分析软件聚类分析 4.2聚类分析——系统聚类法 在数据编辑窗口的主菜单中选择“分析(A)”→“分类(F)”→“系统聚类(H)”(如图-4所示), 弹出“系统聚类分析”对话框,将“地区”变量选入“标注个案(C)”中,将其他变量选入“变量框”中,如图-5所示。在“分

7、群”单选框中选中“个案”,表示进行的是Q型聚类。在“输出”复选框中选中“统计量”和“图”,表示要输出的结果包含以上两项。 单击“统计量(S)”按钮,在“系统聚类分析:统计量”对话框中选择“合并进程表”、“相似性矩阵”,如图-6所示,表示输出结果将包括这两项内容。 单击“绘制(T)”按钮,在“系统聚类分析:图”对话框中选择“树状图”、“冰柱”,如图-7所示,表示输出的结果将包括谱系聚类图(树状)以及冰柱图(垂直)。 单击“方法(M)”按钮,弹出“系统聚类分析:方法”对话框,如下图-8所示。 “聚类方法(M)”选项条中可选项包括如图-9所示的几种方法,本例中选择“组间联接”

8、 “度量标准-区间(N)”选项条中可选项包括如图-10所示的几种度量方法,本例中选择“平方Euclidean距离”: “转换值-标准化(S)”选项条中可选项包括如图-11所示的几种将原始数据标准化的方法,本例中选择“全局从0到1”: 冰柱图解释 聚类分析冰柱图形状类似于屋檐上垂下的冰柱,因此而得名。 横轴:案例(Case)表示被聚类的对象或变量; 纵轴:群集数(Number of clusters)表示被聚成几类; 观察冰柱图应从最后一行开始。举例如下: 当聚成6类时X4和X8和X6聚成一类,其他个案自成一类,用白板将6类一下挡上可以看出如图; 当聚成5类时X4和X8和X6和X2聚成一类,其他个案自成一类。 冰柱图的优点是不仅可以显示出不同类数时个案所属的分类结果,还能表现出聚类的过程步骤,生动形象;缺点是不能表现出聚类过程中距离的大小。 若生成的树状图如下,看不清楚。可点击右键导出文件,生成word文件,然后可以看出聚类过程。 导出的word文档中聚类过程如下: 可看出聚类过程为如下表所示: 分类过程统计表 连结顺序 连 结 元 素 1 B C 2 A BC 3 E F 4 EF ABC 5 D ABCEF

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服