ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:956.51KB ,
资源ID:4721480      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4721480.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2019年上海市夏季高考数学试卷.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2019年上海市夏季高考数学试卷.doc

1、上海市2019届秋季高考数学考试卷一、选择题:(本大题共12题,1-6题每题4分,7-12题每题5分,共54分)1. 已知集合,则_.2. 已知且满足,求_.3. 已知向量,则与的夹角为_.4. 已知二项式,则展开式中含项的系数为_.5. 已知x、y满足,求的最小值为_.6. 已知函数周期为,且当,则_.7. 若,且,则的最大值为_.8. 已知数列前n项和为,且满足,则_.9. 过的焦点并垂直于轴的直线分别与交于,在上方,为抛物线上一点,则_.10. 某三位数密码锁,每位数字在数字中选取,其中恰有两位数字相同的概率是_.11. 已知数列满足(),在双曲线上,则_.12. 已知,若,与轴交点为,

2、为曲线,在上任意一点,总存在一点(异于)使得且,则_.二.选择题(本大题共4题,每题5分,共20分)13. 已知直线方程的一个方向向量可以是( )A. B. C. D. 14. 一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( )A. 1 B. 2 C. 4 D. 8 15. 已知,函数,存在常数,使得为偶函数,则可能的值为( )A. B. C. D. 16. 已知.存在在第一象限,角在第三象限;存在在第二象限,角在第四象限;A. 均正确; B. 均错误; C. 对,错; D. 错,对;三.解答题(本大题共5题,共76分)17. (本题满分

3、14分)如图,在长方体中,为上一点,已知,.(1)求直线与平面的夹角;(2)求点到平面的距离.18.(本题满分14分)已知.(1)当时,求不等式的解集;(2)若时,有零点,求的范围.19.(本题满分14分)如图,为海岸线,为线段,为四分之一圆弧,.(1)求长度;(2)若,求到海岸线的最短距离.(精确到)20.(本题满分16分)已知椭圆,为左、右焦点,直线过交椭圆于A、B两点.(1)若AB垂直于轴时,求;(2)当时,在轴上方时,求的坐标;(3)若直线交轴于M,直线交轴于N,是否存在直线,使,若存在,求出直线的方程;若不存在,请说明理由.21.(本题满分18分)数列有项,对任意,存在,若与前项中某

4、一项相等,则称具有性质.(1)若,求可能的值;(2)若不为等差数列,求证:中存在满足性质;(3)若中恰有三项具有性质,这三项和为,使用表示.上海市2019届秋季高考数学考试卷参考答案与试题解析一、选择题:(本大题共12题,1-6题每题4分,7-12题每题5分,共54分)1.已知集合,则_.【思路分析】然后根据交集定义得结果【解析】:根据交集概念,得出:.【归纳与总结】本题主要考查集合的基本运算,比较基础2.已知且满足,求_.【思路分析】解复数方程即可求解结果【解析】:,.【归纳与总结】本题主要考查复数的基本运算,比较基础3.已知向量,则与的夹角为_.【思路分析】根据夹角运算公式求解【解析】:.

5、【归纳与总结】本题主要考查空间向量数量积,比较基础4.已知二项式,则展开式中含项的系数为_.【思路分析】根据二项式展开式通项公式求出取得含项的的项,再求系数【解析】:令,则,系数为.【归纳与总结】本题主要考查项式展开式通项公式的应用,比较基础5.已知x、y满足,求的最小值为_.【思路分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【解析】:线性规划作图:后求出边界点代入求最值,当,时,. 【归纳与总结】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题6.已知函数周期为,且当,则_.【思路分析】直接利用函数周期为1,将转到

6、已知范围内,代入函数解析式即可【解析】:.【归纳与总结】本题考查函数图像与性质,是中档题7.若,且,则的最大值为_.【思路分析】利用已知等式转化为一个变量或者转化为函有的式子求解【解析】:法一:,;法二:由,(),求二次最值.【归纳与总结】本题考查基本不等式的应用,是中档题8.已知数列前n项和为,且满足,则_.【思路分析】将和的关系转化为项的递推关系,得到数列为等比数列.【解析】:由得:() 为等比数列,且, .9.过的焦点并垂直于轴的直线分别与交于,在上方,为抛物线上一点,则_.【思路分析】根据等式建立坐标方程求解【解析】:依题意求得:,设M坐标有:,代入有:即:.【归纳与总结】本题考查直线

7、与抛物线的位置关系,考查数形结合的解题思想方法,是中档题10某三位数密码锁,每位数字在数字中选取,其中恰有两位数字相同的概率是_.【思路分析】分别计算出总的排列数和恰有两位数字相同的种类求解.【解析】:法一:(分子含义:选相同数字选位置选第三个数字)法二:(分子含义:三位数字都相同+三位数字都不同)【归纳与总结】本题考查古典概型的求解,是中档题11.已知数列满足(),在双曲线上,则_.【思路分析】利用点在曲线上得到关于n的表达式,再求极限.【解析】:法一:由得:,利用两点间距离公式求解极限。法二(极限法):当时,与渐近线平行,在x轴投影为1,渐近线倾斜角满足:,所以.【归纳与总结】本题考查数列

8、极限的求解,是中档题12.已知,若,与轴交点为,为曲线,在上任意一点,总存在一点(异于)使得且,则_.【思路分析】【解析】:【归纳与总结】二. 选择题(本大题共4题,每题5分,共20分)13.已知直线方程的一个方向向量可以是( )B. B. C. D. 【思路分析】根据直线的斜率求解.【解析】:依题意:为直线的一个法向量, 方向向量为,选D.【归纳与总结】本题考查直线方向向量的概念,是基础题14.一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( )B. 1 B. 2 C. 4 D. 8 【思路分析】根据直线的斜率求解.【解析】:依题意:,选

9、B.15.已知,函数,存在常数,使得为偶函数,则可能的值为( )B. B. C. D. 【思路分析】根据选择项代入检验或者根据函数性质求解.【解析】:法一(推荐):依次代入选项的值,检验的奇偶性,选C;法二:,若为偶函数,则,且也为偶函数(偶函数偶函数=偶函数), ,当时,选C.16.已知.存在在第一象限,角在第三象限;存在在第二象限,角在第四象限;B. 均正确; B. 均错误; C. 对,错; D. 错,对;【思路分析】根据选择项代入检验或者根据函数性质求解.【解析】:法一:(推荐)取特殊值检验法:例如:令和,求看是否存在.(考试中,若有解时则认为存在,取多组解时发现没有解,则可认为不存在)

10、,选D.法二:解:设,则原式可化为,整理得,以为主元,则要使方程有解,需使有解,令,则恒成立函数在上单调递减,又存在使,当时设方程的两根分别为,当时,故必有一负根,对;当时,故两根均为负根,错;选D.三. 解答题(本大题共5题,共76分)17.(本题满分14分)如图,在长方体中,为上一点,已知,.(1)求直线与平面的夹角;(2)求点到平面的距离.【思路分析】根据几何图形作出线面角度求解;建立坐标系计算平面的法向量求解.【解析】:(1)依题意:,连接AC,则与平面ABCD所成夹角为; ,为等腰直角,; 直线与平面的夹角为.(2) 法一(空间向量):如图建立坐标系:则:,求平面的法向量:,得:A到

11、平面的距离为:法二(等体积法):利用求解,求时,需要求出三边长(不是特殊三角形),利用求解.【归纳与总结】本题考查点到平面的距离的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题18.(本题满分14分)已知.(1)当时,求不等式的解集;(2)若时,有零点,求的范围.【思路分析】将不等式具体化,直接解不等式;分离参数得到新函数,研究新函数的最值与值域.【解析】:(1)当时,;代入原不等式:;即:移项通分:,得:;(2) 依题意:在上有解参编分离:,即求在值域,在单调递增,;,故:.【归纳与总结】本题考查了分式

12、不等式的解法、分式函数最值与值域的求解,也考查了转化与划归思想的应用19.(本题满分14分)如图,为海岸线,为线段,为四分之一圆弧,.(1)求长度;(2)若,求到海岸线的最短距离.(精确到)【思路分析】根据弧长公式求解;利用正弦定理解三角形.【解析】:(1)依题意:,弧BC所在圆的半径弧BC长度为:km(2)根据正弦定理:,求得:,kmCD=36.346km D到海岸线最短距离为35.752km.【归纳与总结】本题考查了圆弧弧长求法、正弦定理在解三角形中的应用,考查了数形结合思想的应用20.(本题满分16分)已知椭圆,为左、右焦点,直线过交椭圆于A、B两点.(1)若AB垂直于轴时,求;(2)当

13、时,在轴上方时,求的坐标;(3)若直线交轴于M,直线交轴于N,是否存在直线,使,若存在,求出直线的方程;若不存在,请说明理由.【思路分析】直接求出A,B坐标;利用三角形面积公式和点在曲线上建立方程;.根据面积关系转化出关于点的坐标关系,再求解出关于点直线斜率的方程.【解析】:(1)依题意:,当ABx轴,则坐标, (2)法一(秒杀):焦点三角形面积公式:;又:,即所以A在短轴端点,即直线(即)方程为:,联立:,得.法二(常规):依题意:设坐标, (注意:用点更方便计算)则有:又A在椭圆上,满足:,即: ,解出:,B点坐标求解方法同法一,.(3) 设坐标,直线l:(k不存在时不满足题意)则:;联立

14、方程:,韦达定理:由直线方程:得M纵坐标:;由直线方程:得N纵坐标:;若,即 ,代入韦达定理:得:,解出: 存在直线或满足题意.【归纳与总结】本题考查椭圆的性质,直线与椭圆的位置关系,考查转化思想,计算能力,属于中档题21.(本题满分18分)数列有项,对任意,存在,若与前项中某一项相等,则称具有性质.(1)若,求可能的值;(2)若不为等差数列,求证:中存在满足性质;(3)若中恰有三项具有性质,这三项和为,使用表示.【思路分析】根据定义式子代入即可求解;通过证明逆否命题证明;去掉具有P性质三项,求和 【解析】:(1)可能的值为3,5,7;(2)要证明中存在满足性质,即证明:若数列中不存在满足性质的项,则为等差数列(原命题的逆否命题)显然时,满足性质,不成立;时,同理时,不成立;时,所以以此类推,其中时不成立只有,即成立,即为等差数列,即得证明:不为等差数列,中存在满足性质(3)将数列中具有性质P的三项去掉,形成一个新数列时,且中元素满足性质P的项,根据(2)为等差数列,所以即又因为三项去掉和为c,所以【归纳与总结】本题考查新定义“性质”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服