1、xyo体验体验:二、二、最优解最优解一般在可行域的一般在可行域的顶点顶点处取得处取得三、在哪个顶点取得不仅与三、在哪个顶点取得不仅与B B的符号有关,的符号有关,而且还与直线而且还与直线 Z=Ax+ByZ=Ax+By的的斜率斜率有关有关一、一、先定先定可行域和平移方向,再找最优解。可行域和平移方向,再找最优解。9090页例页例7 7、一个化肥厂生产甲、乙两种混合肥料,生一个化肥厂生产甲、乙两种混合肥料,生产产1 1车皮甲种肥料的主要原料是磷酸盐车皮甲种肥料的主要原料是磷酸盐4t4t、硝酸盐、硝酸盐18t18t;生产;生产1 1车皮乙种肥料需要的主要原料是磷酸盐车皮乙种肥料需要的主要原料是磷酸盐
2、1t1t、硝、硝酸盐酸盐15t15t。现库存磷酸盐。现库存磷酸盐10t10t、硝酸盐、硝酸盐66t66t,在此基础,在此基础上生产这两种混合肥料。列出满足生产条件的数学关上生产这两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。并计算生产甲、乙两系式,并画出相应的平面区域。并计算生产甲、乙两种肥料各多少车皮,能够产生最大的利润?种肥料各多少车皮,能够产生最大的利润?解:设解:设x x、y y分别为计划生产甲、乙两种混合分别为计划生产甲、乙两种混合 肥料的车皮数,于是满足以下条件:肥料的车皮数,于是满足以下条件:xyo解:解:设生产甲种肥料设生产甲种肥料x x车皮、乙种肥料车皮、
3、乙种肥料y y车皮,车皮,能够产生利润能够产生利润Z Z万元。目标函数为万元。目标函数为Z Zx x0.5y0.5y,可行域如图可行域如图:把把Z Zx x0.5y0.5y变形变形为为y y2x2x2z2z,它表示斜率,它表示斜率为为2 2,在,在y y轴上的截距为轴上的截距为2z2z的一组直线系。的一组直线系。xyo 由图可以看出,当直线经过由图可以看出,当直线经过可行域上的点可行域上的点MM时,时,截距截距2z2z最大,即最大,即z z最大。最大。答:答:生产甲种、乙种肥料各生产甲种、乙种肥料各 2 2车皮,能够产生最大利车皮,能够产生最大利 润,最大利润为润,最大利润为3 3万元。万元。
4、M 容易求得容易求得MM点的坐标为点的坐标为(2 2,2 2),),则则Z Zmaxmax3 3xyo简单的线性规划问题(三)简单的线性规划问题(三)例例、要要将将两两种种大大小小不不同同规规格格的的钢钢板板截截成成A A、B B、C C三三种种规规格格,每每张张钢钢板板可可同同时时截截得得三三种种规格的小钢板的块数如下表所示规格的小钢板的块数如下表所示 :规格类型规格类型钢板类型钢板类型第一种钢板第一种钢板第二种钢板第二种钢板A A规格规格B B规格规格C C规格规格2 21 12 21 13 31 1今需要今需要A,B,CA,B,C三种规格的成品分别为三种规格的成品分别为1515,1818
5、2727块,问各截这两种钢板多少张可得所需块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少。三种规格成品,且使所用钢板张数最少。解:设需截第一种钢板解:设需截第一种钢板x x张、第二种钢板张、第二种钢板y y张,可得张,可得x0y2x+y=15x+3y=27x+2y=18x+y=02x+y15,x+2y18,x+3y27,x0,xN*y0 yN*经经过过可可行行域域内内的的整整点点B(3,9)和和C(4,8)且且和和原原点点距距离离最近的直线是最近的直线是x+y=12,它们是最优解它们是最优解.答答:(略略)作出一组平行直线作出一组平行直线z=x+y,目标函数目标函数z=
6、x+yz=x+yB(3,9)C(4,8)A(18/5,39/5)打网格线法打网格线法在可行域内打出网格线,在可行域内打出网格线,当直线经过点当直线经过点A A时时z=x+y=11.4z=x+y=11.4,但它不是最优整数解,但它不是最优整数解,将直线将直线x+y=11.4继续向上平移继续向上平移,2x+y=15x+3y=27x+2y=18x+y=0直线直线x+y=12x+y=12经过的整点是经过的整点是B(3,9)B(3,9)和和C(4,8)C(4,8),它们是最优解,它们是最优解.作出一组平行直线作出一组平行直线z z =x+yx+y,目标函数目标函数z=x+yz=x+yB(3,9)C(4,
7、8)A(18/5,39/5)当当直直线线经经过过点点A A时时z=x+y=11.4z=x+y=11.4,但但它它不不是是最最优优整整数数解解.作直线作直线x+y=12x+y=12x+y=12解得解得交点交点B,C的坐标的坐标B(3,9)和和C(4,8)调整优值法调整优值法2x+y15,x+2y18,x+3y27,x0,xN*y0 yN*x0y1.1.线性规划的讨论范围:线性规划的讨论范围:教材中讨论了教材中讨论了两个变量的线性规划问题,这类问题可两个变量的线性规划问题,这类问题可以用图解法来求最优解,但涉及更多变以用图解法来求最优解,但涉及更多变量的线性规划问题不能用图解法来解;量的线性规划问
8、题不能用图解法来解;2.2.求线性规划问题的最优整数解时,求线性规划问题的最优整数解时,常常 用用打网格线打网格线和和调整优值调整优值的方法,这要求作的方法,这要求作图必须精确,线性目标函数对应的直线斜图必须精确,线性目标函数对应的直线斜率与其他直线的斜率关系要把握准确率与其他直线的斜率关系要把握准确练习题练习题1、某厂拟生产甲、乙两种适销产品,每件销售收入分某厂拟生产甲、乙两种适销产品,每件销售收入分别为别为30003000元、元、20002000元,甲、乙产品都需要在元,甲、乙产品都需要在A A、B B两两种设备上加工,在每台种设备上加工,在每台A A、B B上加工上加工1 1件甲所需工时
9、分别件甲所需工时分别为为1h1h、2h2h,加工,加工1 1件乙所需工时分别为件乙所需工时分别为2h,1h.A2h,1h.A、B B两两种设备每月有效使用台时数分别为种设备每月有效使用台时数分别为400h400h和和500h500h。如何。如何安排生产可使收入最大?安排生产可使收入最大?解:解:设每月生产甲产品设每月生产甲产品x x件,生产乙产品件,生产乙产品y y件,每月收件,每月收入为入为Z Z千元,目标函数为千元,目标函数为Z Z3x3x2y2y,满足的条件是,满足的条件是 Z Z 3x3x2y2y 变形为变形为它表示斜率为它表示斜率为 的直线系,的直线系,Z Z与这条直线的截距有关。与这条直线的截距有关。XYO400200250500 当直线经过点当直线经过点MM时,截距最大,时,截距最大,Z Z最大。最大。M解方程组解方程组可得可得MM(200200,100100)Z Z 的最大值的最大值Zmax Zmax 3x3x2y2y800800(千元)(千元)故生产甲产品故生产甲产品200200件,件,乙产品乙产品100100件,收入最大,件,收入最大,为为8080万元。万元。






