ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:143KB ,
资源ID:4692636      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4692636.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(一次函数与几何综合解答策略.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一次函数与几何综合解答策略.doc

1、一次函数与几何综合一般解答思路金山初级中学 庄士忠 201508一、“一次函数与几何综合”解题思路:_坐标代入可求表达式_;_由表达式可求坐标或者表达坐标_;_坐标转线段长;_线段长转坐标_;_ k、b的几何意义以及直线的位置关系(平行或垂直);二、精讲精练1.如图,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上两点,已知四边形ABCD是正方形,则k值为_ 总结提升:此题可通过“设份数法”解题。由于直线y=2x的斜率为2,所以其铅直高度比水平宽度就是2;故而我们设OA=1,则AB=AD=CD=2,OD=3,所以y=kx的斜率就是三分之二;与横轴正半轴夹角是锐角,所以k0;2.如图,直

2、线l1交x轴,y轴于A,B两点,OA=m,OB=n,将AOB绕点O逆时针旋转90得到CODCD所在直线l2与直线l1交于点E,则l1 l2;若直线l1,l2的斜率分别为k1,k2,则k1k2=_总结提升:此题可先通过构造小山坡法,算出直线l1的斜率,由于其与横轴正半轴的夹角是钝角,所以k0,斜率前加负号;再根据旋转是一种全等变换,对应边和对应角都相等,计算出直线l2的斜率,夹角为锐角,所以k0;k1k2=1;3.如图,已知直线l:y=与x轴交于点A,与y轴交于点B,将AOB沿直线l折叠,点O落在点C处,则直线CA的表达式为_ 总结提升:1、 首先应学会“数形结合”的思想,看到一个直线的表达式,

3、从中读出相应的信息。比如直线l:y=,首先我们可以从中读出b的信息,它是直线与纵轴交点的纵坐标,所以B点的坐标就是(0,);其次我们能从中读出斜率的信息,也就是铅直高度与水平宽度的比,由此判断三角形AOB是一个含有30角的直角三角形;2、 根据折叠的轴对称性质,对应边相等,同时有一个角是60,则连接OC,就会出现一个等边三角形,过C点做横轴的垂线,就又会出现一个含有30角的直角三角形,据此可以求出直线AC的斜率,夹角是钝角,所以k为负,前面加负号,再把A点坐标代入表达式求出b即可。4.如图,等腰梯形ABCD中,ADBC,BC在x轴上,直线y=kx-1平分梯形ABCD的面积,已知A(4,2),则

4、k= 总结提升:1、 对于一个中心对称的图形来说,若一条直线平分它的面积,那么这条直线必然经过这个中心对称图形的对称中心;2、 由于四边形DCBA是一个等腰梯形,是一个轴对称图形,而不是中心对称图形,但是假使我们过A点做底边的垂线,剖掉两边的两个全等的直角三角形,剩下部分就是一个矩形,而矩形是个中心对称图形,同时直线亦平分它的面积,所以这条直线必然经过矩形的对称中心,连接OA,按照中点坐标公式,可求出对称中心的坐标,再代入直线的表达式即可求。5.已知:直线y=mx-3,y随x增大而减小,且与直线x=1,x=3,x轴围成的面积为8,则m的值为_总结提升:1、 由于这四条直线围成了一个梯形,高为2

5、,只需求出上底和下底,按照梯形面积公式列方程解题即可;2、 设直线x=1,x=3分别与直线y=mx-3相交与A、B,则A点的横坐标是1,纵坐标是m-3;B点的横坐标是3,纵坐标是3m-3,将坐标转为线段长,则上底长是大坐标小坐标=0(m-3)=3m;下底长是大坐标小坐标=0(3m-3)=33m;据此列方程解题即可。6.如图,把RtABC放在平面直角坐标系内,其中CAB=90,BC=5,点A,B的坐标分别为(1,0),(4,0),将ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A4B8C16D总结提升:1、 根据题目中的已知条件,可先求出点C的坐标(1,4);2

6、、 由于将三角形ABC向右平移,而根据平移的性质,平移不改变图形的形状和大小,是一种全等变换,所以点C的纵坐标是始终不变的,当它与直线y=2x-6相交时,将纵坐标代入直线的表达式,可求出交点的横纵坐标是5,由此三角形ABC沿着横轴正半轴的方向向右平移了4个距离;3、 根据平移的性质,对应线段平行且相等,则BC扫过的图形是一个平行四边形,底是平移的距离,高是C点的纵坐标,代入面积公式可解。7.如图,已知直线l1:y=与直线l2:y=-2x+16相交于点C,直线l1,l2分别交x轴于A,B两点,矩形DEFG的顶点D,E分别在l1,l2上,顶点F,G都在x轴上,且点G与点B重合,那么S矩形DEFG:

7、SABC=_ 总结提升:1、 先根据两条直线的表达式,分别求出A、B两点的坐标,同时将B点的横坐标代入直线l1的表达式,可求出D点的坐标,同时由于四边形DEFG是矩形,D、E两点的纵坐标相同,所以将D点的纵坐标代入直线l2的表达式,可以求出E点的坐标;2、 然后再两条直线联立可以求出其交点C的坐标;则矩形和三角形的面积均可求,代入求解即可。8.直线AB:y=-x+b分别与x轴,y轴交于A(6,0),B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1(1)求直线BC的解析式(2)直线EF:y=kx-k(k0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使得SEBD=

8、SFBD?若存在,求出k的值;若不存在,说明理由(3)如图,P为A点右侧x轴上一动点,以P为直角顶点、BP为腰在第一象限内作等腰RtBPQ,连接QA并延长交y轴于点K,求K点坐标 总结提升:1、先将A点的坐标代入直线AB的表达式,求出b的值;由于直线BC的斜率是3,夹角是锐角,所以为正,同时经过B点,因此其表达式为y=3x+6;2、由于直线EF:y=kx-k(k0)交x轴于点D,则D点的纵坐标为0,代入此直线的表达式,可求出其横坐标为1,则D点是一个定点;3、连接BD,则可以看出两个三角形有共同的一边,是“背靠背”的三角形,则其高相等,因此欲使其面积相等,则只需两个底边相等即可,由此D点就是E

9、、F两点的中点,由于这两点分别在两条已知表达式的直线上,所以我们可设E点的坐标为(m,-m+6), F点的坐标为(n,3n+6);然后按照中点坐标公式列一个二元一次方程组求解即可。3、 由于平面直角坐标系中出现了直角,我们一般考虑使用“双垂直模型”解题,为此我们过点Q做横轴的垂线QH,构造全等三角形,然后有几何法和代数法两种思路解题;4、 几何法:我们设P点的坐标为(a,0),则H点的坐标为(a6,0),Q点的坐标就是(a6,a),则线段AH的长度就是a,据此计算直线QA的斜率是1,则其同纵轴的夹角=直线y=-x+6同纵轴的夹角=45,则三角形ABK是一个等腰三角形,根据等腰三角形三线合一的性

10、质,K、B两点关于原点对称,据此可以求出其坐标;5、 代数法:求出直线QA的斜率后,我们将点A的坐标代入其表达式,求出其确切的表达式,然后求这条直线同纵轴交点的坐标即可。【参考答案】【知识点睛】1铅直高度;水平宽度2;-1;3坐标代入可求表达式;由表达式可以求坐标或者表达坐标;坐标转线段长;线段长转坐标;k、b的几何意义以及直线的位置关系(平行和垂直)【精讲精练】1 2;-1 341 5 6C78:9 8(1) (2)存在,k=(3)K(0,-6)练习.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边

11、上的G处,E,F分别在AD,AB上,且F点的坐标是(2,4)(1)求G点坐标;(2)求直线EF的解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由总结提升:1、首先根据已知条件,分别求出C、A两点的坐标,然后将坐标转为线段长,跟着折叠的轴对称性质,对应边相等,对应角相等,则FB=ABAF=1,FG=AF=2,根据勾股定理可求BG的长,再用BCBG=GC,即可得G点的坐标;2、注意到经由折叠得到的小直角三角形的直角边和斜边比是1:2,根据直角三角形中若一条直角边等于斜边的一半,那么它所对的角是30,

12、则可得出BFG=60,这样AFE=EFG=60,这样就又出现了一个含有30角的直角三角形AEF,根据其三边关系比,可以求出AE的长度,进而求出直线EF的斜率和直线上一点E的坐标,则其表达式可求。3、由于平行四边形的四个顶点用顿号隔开,因此无顺序要求,需分类讨论;根据四个顶点的特性,可以判断其中有两个定点F、G,两个动点M、N,根据“两个定点、两个动点”求平行四边形的存在性的解题模型,为保证不重不漏,我们选取定线段FG作为分类的标准进行讨论;4、首先我们让FG作为平行四边形的一边,根据平行四边形对边平行且相等的特性,我们平移FG,使其分别与直线EF和横轴相交,则出现两种情况,分别构成两个等边三角

13、形,求出此等边三角形的底边长,则M点在底边的垂直平分线上,据此可以求出其坐标;5、接着我们让FG作为平行四边形的对角线,根据平行四边形的对角线互相平分的特性,我们让线段EF绕着其中点P旋转,与直线和横轴分别相交,就是要求的点的位置:由于P即是EF的中点,我们可以根据中点坐标公式,求出P点的坐标,然后再根据P是NN的中点,分别设出这两点的坐标,再利用中点坐标公式,建立两个二元一次方程即可解题即可。解:(1)F(2,4),B(3,4),四边形ABCD是矩形AF=2,OA=BC=4,AB=3在RtBFG中,由轴对称性质FG=AF=2 BF=AB-AF=1宽宽的街道 高高的房子 满意的笑容 雪白的肚皮

14、BG= G(3,4-)越来越多 越老越黄 越刮越大 越长越高(2)设y=kx+b 在RtBFG中,BF= FG束 一束束 一束束美丽的鲜花BGF=30AFE=EFG=60在RtAEF中,AF=2远处 短处 到处 找到 照亮 明亮 明晚 照明 空气 空军 海军AE= E(0,4-)b=4-么(什么)无(无法)高(高兴)跟(跟着)以(以后)问(问好)各(各种)气(生气)|k|= y=x+4-淘气的娃娃 美丽的夏夜 可口的松果 闷热的天气(3) 存在M(,)禾字旁:秀、香、和、秋提示:尖尖的铅笔 闪闪的星星 蓝蓝的天空如图,过G作EF的平行线交x轴于点N,过N作FG的平行线交EF于点M,连接MN,GN则四边形MNGF为平行四边形利用特殊角及平行四边形性质求点M坐标即可很红很红的苹果 很多很多的小鸟 很美很美的花儿M(,-)提示:与的方法类似M(,)提示: 方 方字旁(放 旅) 石 石字旁(砍 码 )如图,过G作EF的平行线交x轴于点N,连接NF,过G作NF的平行线交直线EF于点M,连接GM则四边形MFNG是平行四边形

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服