ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:209.41KB ,
资源ID:4684841      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4684841.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【教案】-用频率估计概率.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【教案】-用频率估计概率.docx

1、 更多免费资源请登录荣德基官网()下载或加官方QQ获取用频率估计概率【知识与技能】理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.【过程与方法】经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.【情感态度】通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.【教学重点】对利用频率估计概率的理解和应用.【教学难点】利用频率估计概率的理解.一、情境导入,初步认识问题1400个同学中,一定有2个同学的生日

2、相同(可以不同年)吗?那么300个同学中一定有2个同学的生日相同吗?有人说:“50个同学中,就很可能有2个同学的生日相同.”这话正确吗?调查全班同学,看看有无2个同学的生日相同.问题2要想知道一个鱼缸里有12条鱼,只要数一数就可以了.但要估计一个鱼塘里有多少条鱼,该怎么办呢?【教学说明】在前面我们学习了能列举所有可能的结果,并且每种结果的可能性相等的随机事件的概率的求法.那么这里的两个问题情境中,很容易让学生想到这些事件的结果不容易完全列举出来,而且每种结果出现的可能性也不一定是相同的.从而引发学生的求知欲,对于这类事件的概率该怎样求解呢,引入课题.二、思考探究,获取新知1.利用频率估计概率试

3、验:把全班同学分成10组,每组同学掷一枚硬币50次,整理同学们获得的试验数据,并记录在下表中:填表方法:第1组的数据填在第1行;第1,2组的数据之和填在第2行,10个组的数据之和填在第10行.如果在抛掷n次硬币时,出现m次“正面向上”,则随机事件“正面向上”出现的频率为m/n.【教学说明】分组是为了减少劳动强度加快试验速度,当然如果条件允许,组数分得越多,获得的数据就会越多,就更容易观察出规律.让学生再次经历数据的收集,整理描述与分析的过程,进一步发展学生的统计意识,发现数据中隐藏的规律.请同学们根据试验所得数据想一想:“正面向上”的频率有什么规律?历史上,有些人曾做过成千上万次抛掷硬币的试验

4、,试验结果如下:思考 随着抛掷次数的增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳,使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性,在试验次数较少时,“正面向上”的频率起伏较大,而随着试验次数逐渐增加,一般地,频率会趋于稳定,“正面向上”的频率越来越接近0.5,也就是说,在0.5左右摆动的幅度越来越小.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.【归纳结论】一般地,在大量重复试验中,如果事件A发生的频率m/n稳定于某个常数P,那么事件A发生的概率P(A)=P.思考对一个随机事件A,用频率估计的概率P(A)可能

5、小于0吗?可能大于1吗?答:都不可能,它们的值仍满足0P(A)1.2.利用频率估计概率的应用问题1某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?幼树移植成活率是实际问题中的一种概率,这种实际问题中的移植试验不属于各种结果可能性相等的类型.因而要考查成活率只能用频率去估计.在同样的条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率,若随着移植棵树n的越来越大,频率m/n越来越稳定于某个常数.则这个常数就可以作为成活率的近似值.上述问题可设计如下模拟统计表,补出表中空缺并完成表后填空.从表中可以发现,幼树移植成活的频率在左右摆动,且随着统计数据的增加,这种规律

6、愈加明显,所以估计幼树移植成活的频率为:.答案:(1)表中空出依次填:0.940,0.923,0.883,0.897(2)0.9,0.9问题2某水果公司以2元/千克价格购进10000千克的水果,且希望这些水果能获得税前利润5000元,那么在出售这些水果(已去掉损坏的水果)时,每千克大约定价为多少元较合适?解:要定出合适的价格,必须考虑该水果的“完好率”或“损坏率”,如考查“损坏率”就需要从水果中随即抽取若干,进行损坏数量的统计,并把结果记录下来,为此可仿照上述问题制定如下表格:从表格可看出,水果损坏率在某个常数(例如0.1)左右摆动,并且随统计量的增加,这种规律逐渐明显,那么可以把水果损坏的概

7、率估计为这个常数,如果估计这个概率为0.1,则水果完好的概率为0.9.在10000千克水果中完好水果的质量为100000.9=9000(千克)设每千克水果的销售价为x元,则有:9000x-210000=5000x2.8出售这批水果的定价大约为2.8元/千克,可获利5000元.思考为简单起见,能否直接把上表中500千克对应的损坏率作为损坏的概率?答:可以.【教学说明】用频率估计概率时,一般是通过观察所计算的各频率数值的变化趋势,即观察各数值主要集中在哪个常数的附近,这个常数就是所求概率的估计值.三、运用新知,深化理解1.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币

8、,那么硬币正面朝上的概率为( )2.一只不透明的袋子中装有4个小球,分别标有数字2、3、4、x,这些球除数字外都相同,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上的数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如下表:解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2、3、4的自然数x,试求x的值.【教学说明】第1题较简单,可由学生自主完成,第2题稍难,由师生共同完成.【答案】1.A2.(1)随着试验次数的增加,出现“和为7”的频率稳定在0.33附近摆

9、动,因此可以知道当试验继续进行下去它的频率会稳定在0.33附近,故可估计“和为7”的概率为0.33.(2)甲、乙两人同时从袋中各摸出一个球所有可能的结果是(2,3)、(2,4)、(2,x)、(3,4)、(3,x)、(4,x)共6个,由于(3,4)这一结果的和为7,再根据“和为7”的概率为0.331/3,所以其中(2,x)、(3,x)、(4,x)这三个结果中一定还有一个和为7,当2+x=7,则x=5,当3+x=7,则x=4,当4+x=7,x=3,显然后两种均不符合题意,故x=5.四、师生互动,课堂小结1.你知道什么时候用频率来估计概率吗?2.你会用频率估计概率来解决实际问题吗?【教学说明】教师先

10、提出上述问题,让学生相互交流,再选派几名同学进行回顾总结,师生再共同完善.1.布置作业:从教材“习题25.3”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的、长期的.这节课教师应把握教学难度,注意关注学生接受情况.2.一般地,当试验的可能结果是有限个而且各种结果发生的可能性相等时,可以用P(A)=m/n的方式得出概率.当试验的所有可能的结果是无限个,或各种可能结果发生的可能性不相等时,常常是通过统计频率来估计概率的.出处:状元大课堂人九教案6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服