4、sin(wx+j)(A>0,w>0) 的图像和函数y = sinx的图像有何关系呢?
4. 函数y = Asin(wx+j)的图像的画法。
为了探讨函数y = Asin(wx+j)的图像和函数y = sinx图像的关系,我们先来用“五点法”作函数y = Asin(wx+j)的图像。
例:作函数y = 3sin(2x+)的简图。
解:⑴设Z= 2x +,那么3xin(2x+)= 3sinZ,x==,分别取z = 0,,p,,2p,则得x为,,,,,所对应的五点为函数y=3sin(x)在一个周期[,]图象上起关键作用的点。
⑵列表
x
2x+
5、
0
p
2p
sin(2x+)
0
1
0
-1
0
3 sin(2x+)
0
3
0
-3
0
⑶描点作图,运用制好的课件演示作图过程。(图略)
归纳: 函数y=Asin(wx+j)(A>0,w>0)图像和函数y=sinx图像的关系。
利用制作好的课件,运用多媒体教学手段向学生展示由函数y=sinx的图像是怎样经过平移变化→周期变换→振幅变换而得到函数y=Asin (wx+j)图像的。
归纳:先把函数y = sinx图像上所有点向左平行移动个单位,得到y = sin(x +)的图像,-----再把y = sin(x +)的图像上
6、所有的点的横坐标缩短到原来的倍(纵坐标不变),得到y = sin(2x +)的图像,-----再把y = sin(2x +)的图像上所有的点的纵坐标伸长到原来的3倍(横坐标不变),从而得到y = 3sin(2x +)图像。
三、思考探究:
上面我们学习了函数y = Asin(wx+j)的图像可由y = sinx图像平移变换→周期变换→振幅变换的顺序而得到,若按下列顺序得到y = Asin(wx+j)的图象吗?
⑴周期变换→平移变换→振幅变换
⑵振幅变换→平移变换→周期变换
⑶平移变换→振幅变换→周期变换
归纳2:函数y = Asin(wx+j),(A>0
7、w>0)的图像可以看作是先把y = sinx的图像上所有的点向左(j>0)或向右(j<0)平移|j|个单位,再把所得各点的横坐标缩短(w>1)或伸长(01)或缩短(00,w>0)的图像的画法。并通过改变各种变换的顺序而发现:平移变换应在周期变换之前,否则得到的函数图像不是函数y =Asin(wx+j)的图像由y = sinx图像的得到。
七、布置作业:《习案》作业十二