ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:107.01KB ,
资源ID:4681891      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4681891.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【教学设计】用代入消元法解二元一次方程组-(2).doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【教学设计】用代入消元法解二元一次方程组-(2).doc

1、更多免费资源请登录荣德基官网()下载或加官方QQ获取5.2.1 用代入消元法解二元一次方程组课题5.2.1 用代入消元法解二元一次方程组课型新知探究课教具教材、课件学习目标知 识 与 能 力会用代入消元法解二元一次方程组。过 程 与 方 法经历探究过程,理解、掌握代入消元法。情感态度价值观了解“消元”思想,初步体会 “化未知为已知”的化归思想。教学重点用代入消元法解二元一次方程组。教学难点在解题过程中体会“消元”思想和“化未知为已知”的化归思想。教法学法引导、启发,合作交流教学环节教 学 过 程设计意图情境引入探索新知每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,

2、前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?通过对已有知识的回顾和思考,学生知识获得既感到自然又倍添新奇,有跃跃欲试的心情。上节课的“买门票”问题,想一想当时是怎么获得二元一次方程组的解? 提出问题:有什么方法可以获得任意一个二元一次方程组的解呢?七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题?上一节课我们就已知道方程组中相同的字母表示的是同一个未知量。所以将中的变形,得,我们把代入方程,即将中的y用代替,这样就有。“二元”化成“一元”。这就是我们在数学研究中经常用到的“化

3、未知为已知”的化归思想,通过它使问题得到完美解决。下面我们完整地解一下这个二元一次方程组。培养学生养成回顾已有知识的习惯,在回顾的过程中学会思考和质疑,引出要研究和解决的问题。引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?引导学生发现新旧知识之间的联系,寻求解决新问题的方法即将新知识转化为旧知识便可。巩固训练归纳小结例1、解方程组: 解:略(P108)例2、解方程组: 解:略(P109)小结:给这种解方程组的方法取个什么名字好?上面解方程组的基本思路是什么?主要步骤有哪些?我们观察例题的解法会发现,我们在解方程组之前,首先要观察方程组中未知数

4、的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?代入消元法:将一个方程变形,即用含其中一个未知数的代数式表示另一个未知数,然后代入另一个未变形的方程,从而由“二元”转化为“一元”。1、 P109随堂练习12、用代入消元法解下列方程组:(1) (2) 通过本节的探究活动,你有什么收获和体会?鼓励学生通过自主探索与交流获得求解。引导学生再次就解出的结果进行思考,判断它们是否是原方程组的解。熟练解二元一次方程组的步骤和过程,并对二元一次方程组的解进行检验。鼓励学生谈自己的收获与感受,加深对温故知新的体会,知道“学而时习之”。板书设计5.2.1 用代入消元法解二元一次方程组引例:门票 例2、略例1、略 议一议:代入消元法解:略 二元一次方程(组)的解法作业P110习题5.21、2教学反思总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”;解二元一次方程组的第一种解法代入消元法。求出一对未知数的值.即求得了方程组的解。 4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服