1、 . 二次函数 一、 选择题 1.下列关系式中,属于二次函数的是(x为自变量)( ) A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在( ) A. 第一象限 B. 第二象限 C. x轴上 D. y轴上 4. 抛物线的对称轴是( ) A. x=-2 B.x=2 C. x=-4 D. x=4
2、 5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( ) A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6. 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( ) A. 一 B. 二 C. 三 D. 四 7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( ) A. 4+m B. m C. 2m-8 D. 8-2m
3、8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )
9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线 上的点,且-1 4、
12. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.
13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.
17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.
18. 已知抛物线y=x2+x+b2经过点,则y1的值是_________.
三、解答题
19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0)。 (1)求此二次函数图象上点A关于对称轴对称的点A′的坐标;
(2)求此二次函数的 5、解析式;
20.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积S△MCB.
22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.
6、
答案与解析
一、选择题
1.考点:二次函数概念.选A.
2.
考点:求二次函数的顶点坐标.
解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.
3.
考点:二次函数的图象特点,顶点坐标.
解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案 7、选C.
4.
考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为.
解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.
5.
考点:二次函数的图象特征.
解析:由图象,抛物线开口方向向下,
抛物线对称轴在y轴右侧,
抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.
6.
考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.
解析:由图象,抛物线开口方向向下,
抛物线对称轴在y轴右侧,
抛物线与y轴交点坐标为(0,c)点, 8、由图知,该点在x轴上方,
在第四象限,答案选D.
7.
考点:二次函数的图象特征.
解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.
8.
考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.
解析:因为一次函数y=ax+b的图象经过第二、三、四象限,
9、 所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.
9.
考点:一次函数、二次函数概念图象及性质.
解析:因为抛物线的对称轴为直线x=-1,且-1 10、x+1,所以对称轴所在直线方程.答案x=1.
12.
考点:利用配方法变形二次函数解析式.
解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.
13.
考点:二次函数与一元二次方程关系.
解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.
14.
考点:求二次函数解析式.
解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,
答案为y=x2-2x- 11、3.
15.
考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.
解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.
16.
考点:二次函数的性质,求最大值.
解析:直接代入公式,答案:7.
17.
考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.
解析:如:y=x2-4x+3.
18.
考点:二次函数的概念性质,求值.
答案:.
三、解答题
19.
考点:二次函数的概念、性质、图象,求解析式. 12、
解析:(1)A′(3,-4)
(2)由题设知:
∴y=x2-3x-4为所求
(3)
20.
考点:二次函数的概念、性质、图象,求解析式.
解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根
又∵(x1+1)(x2+1)=-8
∴x1x2+(x1+x2)+9=0
∴-(k+4)-(k-5)+9=0
∴k=5
∴y=x2-9为所求
(2)由已知平移后的函数解析式为:
y= 13、x-2)2-9
且x=0时y=-5
∴C(0,-5),P(2,-9)
.
21. 解:
(1)依题意:
(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1
∴B(5,0)
由,得M(2,9)
作ME⊥y轴于点E,
则
可得S△MCB=15.
22.
思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:
总利润=单个商品的利润×销售量.
要想获得最 14、大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5-x)元了.
单个的商品的利润是(13.5-x-2.5)
这时商品的销售量是(500+200x)
总利润可设为y元.
利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.
解:设销售单价为降价x元.
15、
顶点坐标为(4.25,9112.5).
即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。赠语; 1、如果我们做与不做都会有人笑,如果做不好与做得好还会有人笑,那么我们索性就做得更好,来给人笑吧! 2、现在你不玩命的学,以后命玩你。3、我不知道年少轻狂,我只知道胜者为王。4、不要做金钱、权利的奴隶;应学会做“金钱、权利”的主人。5、什么时候离光明最近?那就是你觉得黑暗太黑的时候。6、最值得欣赏的风景,是自己奋斗的足迹。 7、压力不是有人比你努力,而是那些比你牛×几倍的人依然比你努力。
Word格式
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818