ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:789.01KB ,
资源ID:4673430      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4673430.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中数学必修一第一章复习(1).doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学必修一第一章复习(1).doc

1、 必修一 第一章 集合与函数概念(1) 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性:元素的确定性,互异性,无序性 3.集合的表示: ※注意:常用数集及其记法:非负整数集(即自然数集):N 正整数集:N*或 N+ 整数集Z 有理数集Q 实数集R 1) 列举法:{a,b,c……} 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xÎR| x-3>2} ,{x| x-3>2} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn图: 二、集合间的基本关系 1.“包含

2、关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 即:① 任何一个集合是它本身的子集。AÍA ②真子集 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 u 有n个元素的集合,含有2n个子集,2n-1个真子集 三、集合的运算 运算类型 交 集 并 集 补 集 定 义 A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}. A,B的并集.记作:AB(读作‘A并B’),即AB ={x|

3、xA,或xB}). S中子集A的补集(或余集) 记作,即 CSA= 韦 恩 图 示 S A 性 质 AΦ=Φ AB=BA ABA ABB A (CuA)=U A (CuA)= Φ. 练习:1.集合{a,b,c }的真子集共有 个 2.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是 . 3.设集合A=,B=,若AB,则的取值范围是 4.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0},

4、 若B∩C≠Φ,A∩C=Φ,求m  典型例题:例1 参数取值及范围 例2 空集优先原则及分类讨论 二、函数的有关概念 1.函数的概念: 注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零,(6)实际问题中的函数的定义域还要保证实际问题有意义. u 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (

5、两点必须同时具备) 2.值域 : 先考虑其定义域 3. 函数图象知识归纳 (1) 画法:描点法;图象变换法 常用变换方法有三种:(1)平移变换(2)伸缩变换 (2)对称变换 4.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。 练习: 1.求下列函数的定义域: ⑴ ⑵ 2.函数 ,若,则=

6、 3.求下列函数的值域: ⑴ ⑵ 4.已知函数,求函数,的解析式 5.已知函数满足,则= 。 6.设是R上的奇函数,且当时,,则当时= 在R上的解析式为 7.设函数的定义域为,则函数的定义域为_ _ 8.若函数的定义域为,则函数的定义域是 典型例题参见 课堂讲解 例1,函数定义域,值域;例2,函数解析式;例3,分段函数及图像问题 第二章 基本初等函数 一、指数函数 (一

7、指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*. u 负数没有偶次方根;0的任何次方根都是0,记作。 当是奇数时,,当是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: , u 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)· ; (2) ; (3) . (二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a>1 0

8、 定义域 R 定义域 R 值域y>0 值域y>0 在R上单调递增 在R上单调递减 非奇非偶函数 非奇非偶函数 函数图象都过定点(0,1) 函数图象都过定点(0,1) 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上,值域是或; (2)若,则;取遍所有正数当且仅当; (3)对于指数函数,总有; 二、对数函数 (一)对数 1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(— 底数,— 真数,— 对数式) 说明: 注意底数的限制,且; ; 注意对数的书写格式. 两个重要对数: 常用对数:以10为底的对数;

9、 自然对数:以无理数为底的对数的对数. u 指数式与对数式的互化 幂值 真数 = N= b 底数 指数 对数 (二)对数的运算性质 如果,且,,,那么: ·+; -; . 注意:换底公式 (,且;,且;). 利用换底公式推导下面的结论 (1);(2). (二)对数函数 1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞). 注意: 对数函数的定义与

10、指数函数类似,都是形式定义,注意辨别。如:, 都不是对数函数,而只能称其为对数型函数. 对数函数对底数的限制:,且. 2、对数函数的性质: a>1 0

11、图象上凸; (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 例题: 1. 已知a>0,a0,函数y=ax与y=loga(-x)的图象只能是       (  )         2.计算: ① ;②= ;= ; ③ = 3.函数y=log(2x2-3x+1)的递减区间为 4.若函数在区间上的最大值是最小值的3倍,则a= 5.已知,(1)求的定义域(2)求使的的取值范围

12、 第三章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。 即:方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. (2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数

13、有一个二重零点或二阶零点. (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 5.函数的模型 收集数据 画散点图 选择函数模型 求函数模型 用函数模型解释实际问题 符合实际 不符合实际 检验 为搞好山东省交通科学研究所研发基地项目的结算审计工作,我跟踪审计部特针对本项目作如下要求,请各施工单位、供货单位遵照执行:and performance test copies of the record. If necessary, review should be carri

14、ed out; 4) for spring hangers (included simple spring, hangers and constant support hangers) it should also be recognized as setting and locking of loads. 5) check the surface quality, folded layering and without cracks, rust and other defects. 5) after completion of the test and control drawing num

15、ber one by one, by series baled. Color alloy steel parts, the parts marking installation location and rotation about the direction you want. 7.3.14. hangers installation 7.3.14.1 hanger layout a. a clear design of hanger should be installed strictly in accordance with the drawings and designs shall

16、not be installed wrong, missing, etc. B. own arrangement of piping support and hanger set and selection should be based on comprehensive analysis of general layout of piping systems; cold installation of steam pipe with particular attention reserved for compensation of thermal expansion displacement

17、 and orientation. C. support systems should be rational to withstand pipe loads, static load and incidental load; reasonable piping displacement; guaranteed under various conditions, stress are within the allowed range. Strength, stiffness, and meet requirements to prevent vibration and soothing wat

18、er, without affecting the adjacent equipment maintenance and other piping installation and expansion. D. equipment connected to the interface to meet pipeline thrust (torque) limit requirements; increase the stability of piping systems to prevent pipeline ... Tube wall thickness (mm) 2-3 4-6 7-10 we

19、ld form no slope mouth weld strengthening height h (mm) 1-1.5 1.5-2 weld width b (mm) 5-6 7-6 has slope mouth weld strengthening height h (mm) 1.5-2 2 weld width b (mm) cover had each edge slope mouth about 2 mm argon arc welding weld strengthening surface height and width tube wall thickness (mm) 2--3 3--4 5--6 weld form weld strengthening height h (mm) 1-1 .5 1.5-2 2-2.5 width b (mm)5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服