ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:183.40KB ,
资源ID:4673213      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4673213.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(微元法在高中物理中的应用.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

微元法在高中物理中的应用.doc

1、微元法在高中物理中的应用江苏省靖江市斜桥中学 夏桂钱微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。它是将研究对象(物体或物理过程)进行无限细分,从其中抽取某一微小单元即“元过程”,进行讨论,每个“元过程”所遵循的规律是相同的。对这些“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法可以把一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化,从而起到巩固知识、加深认识和提高能力的作用。一、挖掘教材中微元素材,认知微元思想微元法思想在新课标教材(人教版)上时有渗透。如在引入瞬时速度的概念时,教材从平均速度出发,提出从t到t+t这段时间间

2、隔内,t越小运动快慢的差异也就越小,运动的描述就越精确。在此基础上,再提出若t趋向于零时,就可以认为t的平均速度就是t时刻的瞬时速度。正是这种无限分割的方法,可以使原来较为复杂的过程转化为较简单的过程。再如,我们要推导匀变速直线运动的位移公式,显然不能直接用s=vt,原因就在于速度本身是变化的,不能直接套用匀速直线运动的公式。但是我们可以想象,如果我们把整个过程的时间分成无数微小的时间间隔,我们分得愈密,每一份的时间间隔也就愈小,此间隔内,速度的变化亦就愈小,如果分得足够细,就可以认为速度几乎不变,此时就可将每一份按匀速直线运动来处理,完毕之后,再累加即可。必修2第五章第四节重力势能中,计算物

3、体沿任意路径向下运动时重力所做的功时,先将物体运动的整个路径分成许多很短的间隔,由于每一段都很小很小,就可以将每一段近似地看做一段倾斜的直线,从而就能利用功的定义式计算出每一小段内重力的功,再累加得到整个过程重力的总功。第五节弹性势能中关于在求弹簧弹力所做的功时,先将弹簧拉伸的整个过程分成很多小段,在足够小的情况下,每一小段位移中可以认为拉力是不变的,从而也能直接利用功的定义式来计算每一小段内拉力所做的功,再累加得到整个过程拉力的总功。这两个功的计算,前者的难点在于物体运动的路径是曲线,后者的难点在于力的大小在变化。教材中的处理方法是前者采用了“化曲为直”的思想,后者采用了“化变为恒”的思想。

4、以上四个实例中,前两个选择的微元是一小段时间,即“时间元”,后两个选择的微元是一小段位移,即“位移元”,这是中学物理中常用的两个微元。在机械运动中瞬时速度概念的建立,是微元思想具体应用的典范。其实,像瞬时加速度、瞬时电流、瞬时感应电动势等物理概念的建立,也渗透了微元思想,课本中都未作深入的探讨,但教师如果能够将这些概念的建立与瞬时速度概念的建立进行类比,不仅能让学生加深对微元概念的理解,而且能为学生学习微元法提供机会。学生掌握了微元思想有助于对这些物理概念、规律的理解,有助于拓宽知识的深度和广度,同时开拓了解决物理问题的新途径,是认识过程中的一次飞跃。二、明晰微元解题思路,形成微元方法“微元法

5、”作为高中物理的一个重要物理思想,在被应用于物理解题时,其解题思路可概括为:选取“微元”,将瞬时变化问题转化为平均变化问题,避开直接求瞬时变化问题的困难;再利用数学“微积分”知识,将平均变化问题转化为瞬时变化问题,既完成求解问题的“转化”又能保证所求问题性质不变且求解更简单。即采取了从对事物的极小部分(微元)分析入手,达到解决事物整体的方法。具体可分以下三个步骤进行:选取微元用以量化元事物或元过程;视元事物或元过程为恒定,运用相应的规律给出待求量对应的微元表达式;在微元表达式的定义域内施以叠加演算,进而求得待求量。试以例题说明微元解题的思路。例1 如图,水平放置的导体电阻为R ,R与两根光滑的

6、平行金属导轨相连,导轨间距为L ,其间有垂直导轨平面的、磁感应强度为B的匀强磁场。导轨上有一导体棒ab质量为m以初速度向右运动。求:导体棒在整个运动过程中的位移x?导体棒整个运动过程中通过闭合回路的电量?三、注重微元思想应用,提升解题技巧由于数学知识上的局限,对于高等数学中可以使用积分来进行计算的一些物理问题,学生在高中很难加以解决。我们都可以通过选取具有代表性的极小的一部分进行分析处理,再从局部推广到整体。事实上,这些选取的具有代表性的“元”,可以是一小段线段圆弧(线元)、一小块面积(面积元)、或一小部分质量(质量元)以及一小段时间(时间元)等,它们均具有整体对象的基本特征。下面通过具体实例

7、进一步阐述微元思想的应用,提升微元解题技巧。小结 本题可采用运动的合成与分解来做,但学生难以理解,不妨采用微元法引导学生分析。要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时间来求它的平均速度,当这一小段的时间趋于零时,该平均速率就为所求速率。例3 用一大小不变的力F拉着物体沿一半径为R的圆周运动一周,力F方向始终沿切线方向,求F所做的功。解析 此题属于变力做功问题,若套用公式W=FL,由于运动一周位移为0,则W=0。但实际情况是:变力F始终与运动方向相同,变力F始终作为动力做功,因此在物体运动一周过程中,变力F应该做正功。进行计算处理时,可用微元法将曲线分成无限个微元段L。每一微元段

8、由于无限小,都可以看成是直线,从而在每一微元段内,可看成是恒力F在做功,W=FL,总功为各个微元段做功的代数和,即 小结 流体模型(如水流、气流、粒子流等)具有连续性作用的特点,若从整体着手,便会有“山重水复疑无路”的痛苦,若运用微元思想就会有“柳暗花明又一村”的惊喜。 由于一切“变化”都必须在一定的时间和空间范围内才可能得以实现,因此“微元法”就抓住“变化”的这一本质特征,通过限制“变化”所需的时间或空间,把变化的事物或变化的过程转化为不变的事物或不变的过程。其常用手段为:通过限制“变化”赖以发生的“时间”和“空间”来限制“变化”。实践证明,虽然高中生对微元法的学习感到困难,但作为大学知识在高中的应用,“微元法”可以丰富我们处理问题的手段,拓展了我们的思维,只要我们利用好教材所提供的素材,在平常的教学中把学生的探究活动开展好,潜移默化、逐步渗透,特别是在高三复习中结合数学中导数和积分的知识,应用微元法来解决实际问题能力的考查便成了理所当然之事,应予以重视。 分享: 26喜欢0赠金笔

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服