1、第五章 相交线与平行线 1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.性质: 有 对 2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.性质:______ _________. 3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_
2、 4. 直线外一点到这条直线的垂线段的长度,叫做________________________. 5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________. 6. 在同一平面内,不相交的两条直线互相__________
3、同一平面内不重合的两条直线的位置关系只有________与_________两种. 7. 平行公理:经过直线外一点,有且只有一条直线与这条直线______. 推论:如果两条直线都与第三条直线平行,那么_____________________.(可用来判定两直线平行) 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________. ⑶两条直线被第
4、三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成: ________________________________________. 8. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .(两直线平行的另一种判定方法) 9. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:___________________
5、 . 10. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题. 11. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_____
6、图形平移的方向不一定是水平的. 平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________. 实数 【知识要点】 1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“”. 2. 如果x2=a,则x叫做a的平方根,记作“±” (a称为被开方数). 3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根. 4. 平方根和算术平方根的区别与联系: 区别:正数的平方根有两个,而它的算术平方根只有一个
7、 联系: (1)被开方数必须都为非负数; (2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根. (3)0的算术平方根与平方根同为0. 5. 如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数). 6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根. 7. 求一个数的平方根(立方根)的运算叫开平方(开立方). 8. 立方根与平方根的区别: 一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0. 9. 一般来说,被开放数扩大(或
8、缩小)倍,算术平方根扩大(或缩小)倍,例如. 10.平方表:(自行完成) 12= 62= 112= 162= 212= 22= 72= 122= 172= 222= 32= 82= 132= 182= 232= 42= 92= 142= 192= 242= 52= 102= 152= 202= 252= 11. 题型规律总结: 1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1. 2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方
9、根,这个立方根的符号与原数相同. 3、本身为非负数,有非负性,即≥0;有意义的条件是a≥0. 4、公式:⑴()2=a(a≥0);⑵=(a取任何数). 5、区分()2=a(a≥0),与 = 6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握). 第六章 平面直角坐标系 一、本章的主要知识点 (一)有序数对:有顺序的两个数a与b组成的数对。 1、记作(a ,b); 2、注意:a、b的先后顺序对位置的影响。 (二)平面直角坐标系 1、平行于坐标轴的直线的点的坐标特点: 平行于x轴(或横轴)的直线上的点的纵坐标相
10、同; 平行于y轴(或纵轴)的直线上的点的横坐标相同。 2、各象限的角平分线上的点的坐标特点: 第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。 3、与坐标轴、原点对称的点的坐标特点: 关于x轴对称的点的横坐标相同,纵坐标互为相反数 关于y轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数 4、特殊位置点的特殊坐标: 坐标轴上 点P(x,y) 连线平行于 坐标轴的点 点P(x,y)在各象限 的坐标特点 象限角平分线上 的点 X轴
11、Y轴 原点 平行X轴 平行Y轴 第一象限 第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x,0) (0,y) (0,0) 纵坐标相同横坐标不同 横坐标相同纵坐标不同 x>0 y>0 x<0 y>0 x<0 y<0 x>0 y<0 (m,m) (m,-m) (三)利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下: • 建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; P(x,y) P(x,y-a) P(x-a,y) P(x+a,y) P(x,y+a) 向上平移a个单位长度 向下平移a个单位长度 向右平移a个单位长度 向左平移a个单位长度 • 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。 (四)用坐标表示平移:见下图 如图,将三角形ABC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1, (1)写出点A1、B1、C1的坐标。 (2)求三角形ABC的面积。 - 4 -






