1、第3讲 统计综合在“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性于是上面介绍的问题是用以前的方法所不能解决的 解斜三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识对于解斜三角形的实际
2、问题,我们要在理解一些术语(如坡角、仰角、俯角、方位角、方向角等)的基础上,正确地将实际问题中的长度、角度看成三角形相应的边和角,创造可解的条件,综合运用三角函数知识以及正弦定理和余弦定理来解决解决实际测量问题的过程一般要充分认真理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.例如下面的问题:如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55 m,BAC=51,ACB=75求A、B两点的距离.(精确到0.1 m)师(启发提问)1:ABC中,根据已知的边和对应角,运用哪个定理比较恰当?师(启发提问)2:运用该定理解题还需要哪些边和角呢?请学生回答生 从题中可以知道角A和角C,所以角B就可以知道,又因为AC可以量出来,所以应该用正弦定理生 这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边解:根据正弦定理,得,65.7(m).答:A、B两点间的距离为65.7米.今天我们开始就正式学习正弦定理、余弦定理在解三角形和科学实践中的重要应用