ImageVerifierCode 换一换
格式:DOC , 页数:26 ,大小:309.51KB ,
资源ID:4668279      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4668279.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人教版高一数学知识点总结.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版高一数学知识点总结.doc

1、高一数学知识总结必修一一、集合一、集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上最高的山元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y元素的无序性: 如:a,b,c和a,c,b是表示同一个集合3.集合的表示: 如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R列举法:a,b,c描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。xR| x-

2、32 ,x| x-32语言描述法:例:不是直角三角形的三角形Venn图:4、集合的分类:有限集 含有有限个元素的集合无限集 含有无限个元素的集合空集 不含任何元素的集合例:x|x2=5二、集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2“相等”关系:A=B (55,且55,则5=5)实例:设 A=x|x2-1=0 B=-1,1 “元素相同则两集合相等”即: 任何一个集合是它本身的子集。AA真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)如果 AB,

3、BC ,那么 AC 如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法5、二次函数根的问题一题多解&指数函数y=axaa*ab=aa+b(a0,a、b属于Q)(aa)b=aab(a0,a、b属于Q)(ab)a=aa*ba(a0,a、b属于Q)指数函数对称规律:1、函数y=ax与y=a-x关于y轴对称2、函数y=ax与y=-ax关于x轴对称3

4、、函数y=ax与y=-a-x关于坐标原点对称&对数函数y=logax如果,且,那么: ; ; 注意:换底公式(,且;,且;)幂函数y=xa(a属于R)1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数2、幂函数性质归纳(1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴 方程的根与函数的零点1、函数零点的概念:对于函数,把使成立

5、的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点3、函数零点的求法: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点4、二次函数的零点:二次函数(1),方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点(2),方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点(3),方程无实根,二次函数的图象与轴无交点,二次函数无零点三、平面向量向量:既有大小,又有方向的量数量:只有大小,没有方向

6、的量有向线段的三要素:起点、方向、长度零向量:长度为的向量单位向量:长度等于个单位的向量相等向量:长度相等且方向相同的向量&向量的运算加法运算ABBCAC,这种计算法则叫做向量加法的三角形法则。已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a,有:0aa0a。|ab|a|b|。向量的加法满足所有的加法运算定律。减法运算与a长度相等,方向相反的向量,叫做a的相反向量,(a)a,零向量的相反向量仍然是零向量。(1)a(a)(a)a0(2)aba(b)。

7、数乘运算实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作a,|a|a|,当 0时,a的方向和a的方向相同,当 0时,a的方向和a的方向相反,当 = 0时,a = 0。设、是实数,那么:(1)()a = (a)(2)( )a = a a(3)(a b) = a b(4)()a =(a) = (a)。向量的加法运算、减法运算、数乘运算统称线性运算。向量的数量积已知两个非零向量a、b,那么|a|b|cos 叫做a与b的数量积或内积,记作a?b,是a与b的夹角,|a|cos (|b|cos )叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。a?b的几何意义:数量积a?

8、b等于a的长度|a|与b在a的方向上的投影|b|cos 的乘积。两个向量的数量积等于它们对应坐标的乘积的和。四、三角函数1、善于用“1“巧解题2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法15、正弦函数、余弦函数和正切函数的图象与性质:函数性质 图象定义域值域最值当时,;当 时,当时, ;当时,既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴必修四角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第

9、几象限,则称为第几象限角第一象限角的集合为第二象限角的集合为第三象限角的集合为第四象限角的集合为终边在轴上的角的集合为终边在轴上的角的集合为终边在坐标轴上的角的集合为3、与角终边相同的角的集合为4、已知是第几象限角,确定所在象限的方法:先把各象限均分等份,再从轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为终边所落在的区域5、长度等于半径长的弧所对的圆心角叫做弧度口诀:奇变偶不变,符号看象限公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)sincos(2k)costan(2k)tancot(2k)cot公式二:设为任意角, 的三角函数值与

10、的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式三:任意角与 -的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式五:利用公式一和公式三可以得到2-与的三角函数值之间的关系:sin(2)sincos(2)costan(2)tancot(2)cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(/2)c

11、oscos(/2)sintan(/2)cotcot(/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tan(以上kZ)其他三角函数知识:同角三角函数基本关系同角三角函数的基本关系式倒数关系:tan cot1sin csc1cos sec1商的关系:sin/costansec/csccos/sincotcsc/sec平方关系:sin2()cos2()11tan2()sec2()1cot2()csc2()两角和差公式两角和与差的三角函数公式sin()sincosco

12、ssinsin()sincoscossincos()coscossinsincos()coscossinsintantantan()1tan tantantantan()1tan tan倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin22sincoscos2cos2()sin2()2cos2()112sin2()2tantan21tan2()半角公式半角的正弦、余弦和正切公式(降幂扩角公式)1cossin2(/2)21coscos2(/2)21costan2(/2)1cos万能公式万能公式2tan(/2)sin1tan2(/2)1tan2(/2)cos1tan2(/2)2tan(/2

13、)tan1tan2(/2)和差化积公式三角函数的和差化积公式 sinsin2sin-cos-2 2 sinsin2cos-sin-2 2 coscos2cos-cos-2 2 coscos2sin-sin-2 2积化和差公式三角函数的积化和差公式sin cos0.5sin()sin()cos sin0.5sin()sin()cos cos0.5cos()cos()sin sin 0.5cos()cos()5平面解析几何初步两点距离公式:根号(x1-x2)2+(y1-y2)2中点公式:X=(X1+X2)/2 Y=(Y1+Y2)/2直线的斜率 倾斜角不是90的直线,它的倾斜角的正切,叫做这条直线的

14、斜率.通常用k来表示,记作: k=tga(0a180且a90) 倾斜角是90的直线斜率不存在,倾斜角不是90的直线都有斜率并且是确定的点斜式:y-y1=k(x-x1);斜截式:y=kx+b;截距式:x/a+y/b=1直线的标准方程:Ax+Bx+C=0圆的一般方程: x2y2DxEyF0圆的标准方程(x-a)2+(y-b)2=r2 2表示平方圆与圆的位置关系:1 点在圆上(点到半径的距离等于半径) 点在圆外(点到半径的距离大于半径) 点在圆内(点到半径的距离小于半径) 2 (1)相切:圆心到直线的距离等于半径 (2)相交:圆心到直线的距离小于半径 (3)相离:圆心到直线的距离大于半径 3 圆的切

15、线是指 垂直于半径,直线到圆心距离等于半径的直线,垂足叫切点 4 圆心距为Q 大圆半径为R 小圆半径为r 两圆外切 Q=R+r 两圆内切 Q=R-r (用大减小) 两圆相交 QR+r 两圆内含 Qr,反之dr则相离, 相切则d=r,反之d=r则相切, 相交则dr,反之dr则相交.空间直角坐标系的定义 ABCD ABCO是长方体,以O为原点,分别以射线OB、OA、OB为正方向,以线段OB、OA、OB建立三条坐标轴:x轴、y轴、z轴,这样就建立了一个空间直角坐标系O xyz,点O叫做坐标原点,x、y、z轴叫做坐标轴,由两条坐标轴组成的平面叫做坐标平面, 分别叫做xOy平面、yOz平zOx平面,这种

16、坐标系叫做右手直角坐标空间直角坐标系内点的坐标表示方法 设点M为空间的一个定点,过点M分别作垂直于x、y、z轴的平面,依次交x、y、z轴于点P、Q、R设点P、Q、R在x、y、z轴上的坐标分别为x、y、z,那么就得到与点M对应惟一确定的有序实数组(x,y,z),有序实数组(x,y,z)叫做点M的坐标,记作M(x,y,z),其中x、y、z分别叫做点M的横坐标、纵坐标、竖坐标。空间内两点之间的距空间中两点P1(x1,y1,z1)、P2(x2,y2,z2)的距离|P1P2|(x1 - x2)2 + (y1 - y2)2 + (z1 - z2)2空间中点公式 空间中两点P1(x1,y1,z1)、P2(x

17、2,y2,z2),中点P坐标(x1+x2)/2,(y1+y2)/2,(z1+z2)/2例题:1直线L与直线3x+4y-7=0平行,且和两坐标轴围成的三角形面积为24,求直线L的方程。解:直线L与3x+4y-7平行,所以斜率相等,同为-3/4 设直线的方程是y=(-3/4)x+b 它与两坐标轴的交点坐标分别是(0,b),(4b/3,0) 和两坐标轴围成的三角形面积为24 (1/2)*|b|*|4b/3|=24 |b|=36 b=6 直线L有两条,方程分别是y=(-3/4)x+6或y=(-3/4)x-62求两点(-5,-1),(-3,4)连成线段的垂直平分线的方程.解设y=k1x+b1过两点(-5

18、,-1)(-3,4) 得-1=-5k1+b1 4=-3k1+b1 解之得k1=5/2;b1=23/2 y=5x/2+23/2 因为k1*k2=-1 所以k2=-2/5 (x1+x2)/2=(-5-3)/2=-4 (y1+y2)/2=(-1+4)/2=3/2 (-4,3/2)过所求方程y=k2x+b 3/2=-2/5*(-4)+b b=-1/10 所以y=-2x/5-1/10 化简4x+10y+1=06基本初等函数从其中一个顶点向一个边引一条线,交另一边上某一点,则这个图形变成有一条公共边且另一组边在同一直线上的两个三角形。有六个内角,其中公共边与另一组在同一直线上的边相交形成的两个角中,每一个

19、角都是一个三角形的一个内角,且是另一个三角形的一个外角 另外还有大于平角小于周角的角。正弦函数 sin=y/r 余弦函数 cos=x/r 正切函数 tan=y/x 余切函数 cot=x/y 正割函数 sec=r/x 余割函数 csc=r/y同角三角函数间的基本关系式: 平方关系: sin2()+cos2()=1 tan2()+1=sec2() cot2()+1=csc2() 积的关系: sin=tan*cos cos=cot*sin tan=sin*sec cot=cos*csc sec=tan*csc csc=sec*cot 倒数关系: tancot=1 sincsc=1 cossec=1一

20、个园,弧长和半径相等时所对应的角度是1弧度.弧度和角度的换算关系: 弧度*180/(2*)=角度诱导公式常用的诱导公式有以下几组:公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)sincos(2k)costan(2k)tancot(2k)cot公式二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式三:任意角与 -的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin()sincos()costan(

21、)tancot()cot公式五:利用公式一和公式三可以得到2-与的三角函数值之间的关系:sin(2)sincos(2)costan(2)tancot(2)cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tan(以上kZ)函数类型 第一象限 第二象限 第三象限 第四象

22、限正弦 + + 余弦 + +正切 + + 余切 + + 正弦函数的性质: 解析式:y=sinx图像 波形图像(由单位圆投影到坐标系得出)定义域R(实数) 值域:-1,1 最值: 最大值:当x=(/2)+2k时,y(max)=1 最小值:当x=-(/2)+2k时,y(min)=-1值点: (k,0)对称性: 1)对称轴:关于直线x=(/2)+k对称 2)中心对称:关于点(k,0)对称 周期:2 奇偶性: 奇函数 单调性: 在-(/2)+2k,(/2)+2k上是增函数,在(/2)+2k,(3/2)+2k上是减函数余弦函数的性质: 余弦函数图像: 波形图像定义域:R值域: -1,1最值: 1)当x=

23、2k时,y(max)=12)当x=2k+时,y(min)=-1零值点:(/2+k,0)对称性: 1)对称轴:关于直线x=k对称2)中心对称:关于点(/2+k,0)对称周期: 2奇偶性:偶函数单调性: 在2k-,2k上是增函数 在2k,2k+上是减函数定义域:x|x(/2)+k,kZ值域:R最值:无最大值与最小值零值点:(k,0)对称性:轴对称:无对称轴中心对称:关于点(k,0)对称周期:奇偶性:奇函数单调性:在(-/2+k,/2+k)上都是增函数7平面向量坐标表示法 平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 作为基底。由平面向量的基本定理知,该平面内的任一向

24、量可表示成 ,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y轴上的坐标。在数学中,我们通常用点表示位置,用射线表示方向在平面内,从任一点出发的所有射线,可以分别用来表示平面内的各个方向向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向向量也可用字母a、b、c等表示,或用表示向量的有向线段的起点和终点字母表示向量 的大小,也就是向量 的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0长度等于1个单位长度的向量,叫做单位向量方向相同或相反的非零向量叫做平行向量向量a、b

25、、c平行,记作abc0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行长度相等且方向相同的向量叫做相等向量向量a与b相等,记作a=b零向量与零向量相等任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关向量的运算 1、向量的加法:AB+BC=AC设a=(x,y) b=(x,y)则a+b=(x+x,y+y)向量的加法满足平行四边形法则和三角形法则。向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法AB-AC=CBa-b=(x-x,y-y)若a/b则a=eb则xy-xy=0若a垂直b则ab

26、=0则xx+yy=03、向量的乘法设a=(x,y) b=(x,y)ab(点积)=xx+yy=|a|b|*cos夹角1、向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A(1,2),B(4,2),则把向量 按向量 (1,3)平移后得到的向量是_(答:(3,0) (2)零向量:长度为0的向量叫零向量,记作: ,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与 共线的单位向量是 );(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性

27、;(5)平行向量(也叫共线向量):方向相同或相反的非零向量 、 叫做平行向量,记作: ,规定零向量和任何向量平行。提醒:相等向量一定是共线向量,但共线向量不一定相等;两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;平行向量无传递性!(因为有 );三点 共线 共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。 的相反向量是例题:1.已知点A(1,1),B(-1,5)及AC向量=1/2AB向量,AD向量=2AB向量,AE向量=-1/2AB向量,求点C,D,E的坐标。设C点(x,y),则AB(2,4),AC(x1,y1). 由

28、AC1/2AB得: x11/2(2)1, y11/242 所以,x0,y3,所以点C的坐标是(0,3)设D点(x,y),则AD(x1,y1). 由AD2AB得: x12(2)4, y1248 所以,x3,y9,所以点C的坐标是(3,9)设E点(x,y),则AE(x1,y1). 由AE1/2AB得: x11/2(2)1, y11/242 所以,x2,y1,所以点C的坐标是(2,1)8三角恒等变换两角和差公式 两角和与差的三角函数公式sin()sincoscossinsin()sincoscossincos()coscossinsincos()coscossinsin tantan() 1tan

29、tan tantantan() 1tan tan 倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式)sin22sincoscos2cos2()sin2()2cos2()112sin2() 2tantan2 1tan2()半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) 1cossin2(/2) 2 1coscos2(/2) 2 1costan2(/2) 1cos万能公式 万能公式 2tan(/2)sin 1tan2(/2) 1tan2(/2)cos 1tan2(/2) 2tan(/2)tan 1tan2(/2)和差化积公式 三角函数的和差化积公式 sinsin2sin-cos- 2 2

30、 sinsin2cos-sin- 2 2 coscos2cos-cos- 2 2 coscos2sin-sin- 2 2积化和差公式 三角函数的积化和差公式sin cos0.5sin()sin()cos sin0.5sin()sin()cos cos0.5cos()cos()sin sin 0.5cos()cos()9解三角形步骤1.在锐角ABC中,设三边为a,b,c。作CHAB垂足为点DCH=asinBCH=bsinAasinB=bsinA得到a/sinA=b/sinB同理,在ABC中,b/sinB=c/sinC 步骤2.证明a/sinA=b/sinB=c/sinC=2R:如图,任意三角形A

31、BC,作ABC的外接圆O. 作直径BD交O于D. 连接DA. 因为直径所对的圆周角是直角,所以DAB=90度 因为同弧所对的圆周角相等,所以D等于C. 所以c/sinCc/sinD=BD=2Ra/SinA=BC/SinD=CD=2R 类似可证其余两个等式。二. 正弦定理的变形公式(1) a=2RsinA,b=2RsinB,c=2RsinC;(2) sinA : sinB : sinC = a : b : c;a2=b2+c2-2*b*c*CosAb2=a2+c2-2*a*c*CosBc2=a2+b2-2*a*b*CosCCosC=(a2+b2-c2)/2abCosB=(a2+c2-b2)/2a

32、cCosA=(c2+b2-a2)/2bc证明:如图,有a+b=ccc=(a+b)(a+b)c2=aa+2ab+bbc2=a2+b2+2|a|b|Cos(-)整理得到c2=a2+b2-2|a|b|Cos(注意:这里用到了三角函数公式)再拆开,得c2=a2+b2-2*a*b*CosC同理可证其他,而下面的CosC=(c2-b2-a2)/2ab就是将CosC移到左边表示一下。例题:1已知(B+C):(C+A):(A+B)=4:5:6,求此三角形的最大内角解:设 b+c=4x,可得a=7x/2,b=5x/2,c=3x/2, 再用余弦定理 cosA=-1/2,即A=12021.在三角形ABC中,已知(b

33、+c);(c+a);(a+b)=4;5;6,则sinA;sinB;sinC=_解:、a/sinA=b/sinB=c/sinC (b+c);(c+a);(a+b)=4;5;6 (sinB+sinC):(sinC+sinA):(sinA+sinB)=4k:5k:6k 解得sinA=7k/2 sinB=5k/2 sinC=3k/2 所以sinA:sinB:sinC=7:5:310数列一、 等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为

34、:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d0)或一次函数(d=0,a10),且常数项为0。 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=ak+an-k+1,k1,2,n 若m,n,p,qN*,且m+n=p+q,

35、则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,Snk-S(n-1)k或等差数列,等等。和(首项末项)项数2 项数(末项-首项)公差1 首项=2和项数-末项末项=2和项数-首项等差数列的应用:日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n.则a(m+n)0。等比数列如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。 (1)等比数列的通项公式是:An=A1*q(n1)若通项公式变形为an=a1/q*qn(nN*),当q0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*qx上的一群孤立的点。(2)求和公式:Sn=nA1(q=1) Sn=A1(1-qn)/(1-q) =(a1-a1qn)/(1-q)=a1/(1-q)-a1/(1-q)*qn ( 即A-Aqn)(前提:q不等于 1)任意两项am,an的关系为an=amq(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1an=a2an-1=a3an-2=akan-k+1,k1,2,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服