ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:877.01KB ,
资源ID:4667975      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4667975.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2019中考数学复习-隐形圆问题大全(后有专题练习无答案).doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2019中考数学复习-隐形圆问题大全(后有专题练习无答案).doc

1、2019中考数学复习 隐形圆问题大全一 定点+定长1.依据:到定点的距离等于定长的点的集合是以定点为圆心定长为半径的圆。2.应用:(1)如图,四边形ABCD中,AB=AC=AD=2,BC=1,ABCD,求BD的长。简析:因AB=AC=AD=2,知B、C、D在以A为圆2为半径的圆上,由ABCD得DE=BC=1,易求BD=。(2)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将EBF沿EF所在直线折叠得到EBF,连接BD,则BD的最小值是. 简析:E为定点,EB为定长,B点路径为以E为圆心EB为半径的圆,作穿心线DE得最小值为。(3)ABC中,AB=4,AC

2、=2,以BC为边在ABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为 .简析:先确定A、B点的位置,因AC=2,所以C点在以A为圆心,2为半径的圆上;因点O是点C以点B为中心顺时针旋转45度并1:2缩小而得,所以把圆A旋转45度再1:缩小即得O点路径。如下图,转化为求定点A到定圆F的最长路径,即AF+FO=3。二 定线+定角1.依据:与一条定线的两端夹角一定的动点路径是以定线为弦,定角为圆周角的弧。2.应用:(1)矩形ABCD中,AB=10,AD=4,点P是CD上的动点,当APB=90时求DP的长. 简析:AB为定线,APB为定角(90),P点路径为以AB为弦(直径)的弧,如下

3、图,易得DP为2或8。(2)如图,XOY = 45,等边三角形ABC的两个顶点A、B分别在OX、OY上移动,AB = 2,那么OC的最大值为 .简析:AB为定线,XOY为定角,O点路径为以AB为弦所含圆周角为45的弧,如下图,转化为求定点C到定圆M的最长路径,即CM+MO=+1+。(3)已知A(2,0),B(4,0)是x轴上的两点,点C是y轴上的动点,当ACB最大时,则点C的坐标为_简析:作ABC的处接圆M,当ACB最大时,圆心角AMB最大,当圆M半径最小时AMB最大,即当圆M与y轴相切时ACB最大。如下图,易得C点坐标为(0,2)或(0,-2)。(4)如图,在平面直角坐标系中,抛物线y=ax

4、2-3ax-4a的图象经过点C(0, 2),交轴于点A、B,(A点在点左侧),顶点为D.求抛物线的解析式及点A、B的坐标;将ABC沿直线BC对折,点A的对称点为A,试求A的坐标;抛物线的对称轴上是否存在点P,使BPC=BAC?若存在,求出点P的坐标;若不存在,请说明理由.简析:定线BC对定角BPC=BAC,则P点在以BC为弦的双弧上(关于BC对称),如下图所示。三 三点定圆1.依据:不在同一直线上的三点确定一个圆。2.应用:ABC中,A45,ADBC于D,BD=4,CD=6,求AD的长。 简析:作ABC的外接圆,如下图,易得AD=7+5=12。四 四点共圆1.依据:对角互补的四边形四个顶点共圆

5、(或一边所对两个角相等)。2.应用:如图,在矩形ABCD中, AB=6,AD=8,P、E分别是线段AC、BC上的点,四边形PEFD为矩形,若AP=2,求CF的长。 简析:因PEF=PDF=DCE=90,知D、F、C、E、P共圆,如下图,由1=2、4=5,易得APDDCF,CF:APCD:AD,得CF1.5。五旋转生圆1.如图,圆O的半径为5,A、B是圆上任意两点,且AB=6,以为AB边作正方形ABCD(点D、P在直线两侧),若AB边绕点P旋转一周,则CD边扫过的面积为_ 。简析:CD旋转一周扫过的图形可以用两点确定,一是最远点距离为PC,二是最近点距离为P到直线CD的垂线段,从而确定两个圆,C

6、D即为两圆之间的圆环,如下图。2.如图,在ABC中,BAC=90,AB=5cm,AC=2cm,将ABC绕顶点C按顺时针方向旋转至ABC的位置,则线段AB扫过区域的面积为_。简析:扫过的阴影部分旋转拼合成如下圆心角为45度的扇环。六 动圆综合1.动圆+定弦:依据直径是圆中最长的弦,知此弦为直径时,圆最小。如图, ABC中, ABC90, AB6, BC8, O为AC的中点, 过O作OEOF, OE、OF分别交射线AB、BC于E、F, 则EF的最小值为 .简析:图中显然O、E、F、B共圆,圆是动的,但弦BO5,当BO为直径时最小,所以EF最小为5.2.动圆+定线:相切时为临界值。如图, RtABC

7、中, C90, ABC30, AB6, 点D在AB边上, 点E是BC边上一点 (不与点B、C重合), 且DADE, 则AD的取值范围是 。简析:因DA=DE,可以D点为圆心以DA为半径作圆,则圆D与BC相切时,半径DE最小。E向B点移动半径增大直至D到B处(不含B点),得2AD3。3.动弦+定角:圆中动弦所对的角一定,则当圆的直径最小时此弦长最小。已知:ABC中,B=45,C=60,D、E分别为AB、AC边上的一个动点,过D分别作DFAC于F,DGBC于G,过E作EHAB于H,EIBC于I,连FG、HI,求证:FG与HI的最小值相等。简析:可以看HI何时最小,因B、H、E、I共圆,且弦HI所对

8、圆周角一定,所以当此圆直径最小时弦HI最小,即当BE最小时,此时BEAC,解OHI可得HI的最小长度。同样可求FG的最小长度。此题可归纳一般结论:当ABC=,ACB=,BC=m时,FG和HI的最小值均为m*sin*sin。达标测试: 1.BCAC6,BCA90,BDC45,AD2,求BD.2.如图,将线段AB绕点A逆时针旋转60得到线段AC,继续旋转(0120)得到线段AD,连接CD,BD,则BDC的度数为 .3.如图,在边长为23的等边ABC中,动点D、E分别在BC、AC边上,且保持AE=CD,连接BE、AD,相交于点P,则CP的最小值为_.4.如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交ABC的外角平分线于点F,求证:FEDE.5.当你站在博物馆的展厅中时,你知道站在何观赏最理想吗?如图,设墙壁上的展品最高点P距离地面2.5米,最低点Q距地面2米,观察者的眼睛E距地面1.6米,当视角PEQ最大时,站在此处观赏最理想,则此时E到墙壁的距离为 米.6.如图直线y=x+2分别与x轴,y轴交于点M、N,边长为1的正方形OABC的一个顶点O在坐标系原点,直线AN与MC交于点P,若正方形OABC绕点O旋转一周,则点P到点(0, 1)长度的最小值是_.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服