ImageVerifierCode 换一换
格式:DOC , 页数:26 ,大小:61.50KB ,
资源ID:4656739      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4656739.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(工程造价外文及翻译样本.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

工程造价外文及翻译样本.doc

1、资料内容仅供您学习参考,如有不当之处,请联系改正或者删除。 The Cost of Building Structure 1. Introduction The art of architectural design was characterized as one of dealing comprehensively with a complex set of physical and nonphysical design determinants. Structural considerations were cast as important physical deter

2、minants that should be dealt with in a hierarchical fashion if they are to have a significant impact on spatial organization and environmental control design thinking. The economical aspect of building represents a nonphysical structural consideration that, in final analysis, must also be considere

3、d important. Cost considerations are in certain ways a constraint to creative design. But this need not be so. If something is known of the relationship between structural and constructive design options and their cost of implementation, it is reasonable to believe that creativity can be enhanced. T

4、his has been confirmed by the authors’ observation that most enhanced. This has been confirmed by the authors’ observation that most creative design innovations succeed under competitive bidding and not because of unusual owner affluence as the few publicized cases of extravagance might lead one to

5、believe. One could even say that a designer who is truly creative will produce architectural excellence within the constraints of economy. Especially today, we find that there is a need to recognize that elegance and economy can become synonymous concepts. Therefore, in this chapter we will set for

6、th a brief explanation of the parameters of cost analysis and the means by which designers may evaluate the overall economic implications of their structural and architectural design thinking. The cost of structure alone can be measured relative to the total cost of building construction. Or, since

7、 the total construction cost is but a part of a total project cost, one could include additional consideration for land(10~20percent),finance and interest(100~200 percent),taxes and maintenance costs (on the order of20 percent).But a discussion of these so-called architectural costs is beyond the sc

8、ope of this book, and we will focus on the cost of construction only. On the average, purely structural costs account for about 25 percent of total construction costs, This is so because it has been traditional to discriminate between purely structural and other so-called architectural costs of con

9、struction. Thus, in tradition we find that architectural costs have been taken to be those that are not necessary for the structural strength and physical integrity of a building design. ”Essential services” forms a third construction cost category and refers to the provision of mechanical and elec

10、trical equipment and other service systems. On the average, these service costs account for some 15 to 30 percent of the total construction cost, depending on the type of building. Mechanical and electrical refers to the cost of providing for air-conditioning equipment and he means on air distributi

11、on as well as other services, such as plumbing, communications, and electrical light and power. The salient point is that this breakdown of costs suggests that, up to now, an average of about 45 to 60 percent of the total cost of constructing a typical design solution could be considered as archite

12、ctural. But this picture is rapidly changing. With high interest costs and a scarcity of capital, client groups are demanding leaner designs. Therefore, one may conclude that there are two approaches the designer may take towards influencing the construction cost of building. The first approach to

13、cost efficiency is to consider that wherever architectural and structural solutions can be achieved simultaneously, a potential for economy is evident. Since current trends indicate a reluctance to allocate large portions of a construction budget to purely architectural costs, this approach seems a

14、logical necessity. But, even where money is available, any use of structure to play a basic architectural role will allow the nonstructural budget to be applied to fulfill other architectural needs that might normally have to be applied to fulfill other architectural needs that might normally have t

15、o be cut back. The second approach achieves economy through an integration of service and structural subsystems to round out one’s effort to produce a total architectural solution to a building design problem. The final pricing of a project by the constructor or contractor usually takes a different

16、 form. The costs are broken down into (1) cost of materials brought to the site, (2)cost of labor involved in every phase of the construction process, (3)cost of equipment purchased or rented for the project, (4)cost of management and overhead, and(5) profit. The architect or engineer seldom follows

17、 such an accurate path but should perhaps keep in mind how the actual cost of a structure is finally priced and made up. Thus, the percent averages stated above are obviously crude, but they can suffice to introduce the nature of the cost picture. The following sections will discuss the range of th

18、ese averages and then proceed to a discussion of square footage costs and volume-based estimates for use in rough approximation of the cost of building a structural system. 2. Percentage Estimates The type of building project may indicate the range of percentages that can be allocated to structura

19、l and other costs. As might be expected, highly decorative or symbolic buildings would normally demand the lowest percentage of structural costs as compared to total construction cost. In this case the structural costs might drop to 10~15percent of the total building cost because more money is alloc

20、ated to the so-called architectural costs. Once again this implies that the symbolic components are conceived independent of basic structural requirements. However, where structure and symbolism are more-or-less synthesized, as with a church or Cathedral, the structural system cost can be expected t

21、o be somewhat higher, say, 15and20 percent (or more). At the other end of the cost scale are the very simple and nonsymbolic industrial buildings, such as warehouses and garages. In these cases, the nonstructural systems, such as interior partition walls and ceilings, as will as mechanical systems,

22、 are normally minimal, as is decoration, and therefore the structural costs can account for60 to 70 percent, even 80 percent of the total cost of construction. Buildings such as medium-rise office and apartment buildings(5~10 stories)occupy the median position on a cost scale at about 25 percent fo

23、r structure. Low and short-span buildings for commerce and housing, say, of three or four stories and with spans of some 20 or 30 ft and simple erection requirements, will yield structural costs of 15~20 percent of total building cost. Special-performance buildings, such as laboratories and hospita

24、ls, represent another category. They can require long spans and a more than average portion of the total costs will be allocated to services (i.e., 30~50 percent), with about 20 percent going for the purely structural costs. Tall office building (15 stories or more) and/or long-span buildings (say,

25、50 to 60 ft) can require a higher percentage for structural costs (about 30to 35percent of the total construction costs),with about 30 to 40 percent allocated to services. In my case, these percentages are typical and can be considered as a measure of average efficiency in design of buildings. For

26、example, if a low, short-span and nonmonumental building were to be bid at 30 percent for the structure alone, one could assume that the structural design may be comparatively uneconomical. On the other hand, the architect should be aware of the confusing fact that economical bids depend on the prac

27、tical ability of both the designer and the contractor to interpret the design and construction requirements so that a low bid will ensue. Progress in structural design is often limited more by the designer’s or contractor’ slack of experience, imagination, and absence of communication than by the id

28、ea of the design. If a contractor is uncertain, he will add costs to hedge the risk he will be taking. It is for this reason that both the architect and the engineer should be well-versed in the area of construction potentials if innovative designs ate to be competitively bid. At the least the archi

29、tect must be capable of working closely with imaginative structural engineers, contractors and even fabricators wherever possible even if the architecture is very ordinary. Efficiency always requires knowledge and above all imagination, and these are essential when designs are unfamiliar. The foreg

30、oing percentages can be helpful in approximating total construction costs if the assumption is made that structural design is at least of average (of typical) efficiency. For example, if a total office building construction cost budget is ﹩5,000,000,and 25 percent is the ”standard” to be used for st

31、ructure, a projected structural system should cost no more than ﹩1,250,000.If a very efficient design were realized, say, at 80 percent of what would be given by the ”average” efficient design estimate stated above the savings,(20 percent),would then be﹩250,000 or 5 percent of total construction cos

32、ts ﹩5,000,000.If the ﹩5,000,000 figure is committed, then the savings of ﹩250,000 could be applied to expand the budget for ”other” costs. All this suggests that creative integration of structural (and mechanical and electrical) design with the total architectural design concept can result in eithe

33、r a reduction in purely construction design concept can result in either a reduction in purely construction costs or more architecture for the same cost. Thus, the degree of success possible depends on knowledge, cleverness, and insightful collaboration of the designers and contractors. The above d

34、iscussion is only meant to give the reader an overall perspective on total construction costs. The following sections will now furnish the means for estimating the cost of structure alone. Two alternative means will be provided for making an approximate structural cost estimate: one on a square foot

35、 of building basis, and another on volumes of structural materials used. Such costs can then be used to get a rough idea of total cost by referring to the ”standards” for efficient design given above. At best, this will be a crude measure, but it is hoped that the reader will find that it makes him

36、somewhat familiar with the type of real economic problems that responsible designers must deal with. At the least, this capability will be useful in comparing alternative systems for the purpose of determining their relative cost efficiency. 3. Square-foot Estimating As before, it is possible to e

37、mpirically determine a ”standard” per-square-foot cost factor based on the average of costs for similar construction at a given place and time. more-or-less efficient designs are possible, depending on the ability of the designer and contractor to use materials and labor efficiently, and vary from t

38、he average. The range of square-foot costs for ”normal” structural systems is ﹩10 to ﹩16 psf. For example, typical office buildings average between ﹩12 and ﹩16 psf, and apartment-type structures range from ﹩10 to ﹩14.In each case, the lower part of the range refers to short spans and low buildings,

39、 whereas the upper portion refers to longer spans and moderately tall buildings. Ordinary industrial structures are simple and normally produce square-foot costs ranging from ﹩10 to ﹩14,as with the more typical apartment building. Although the spans for industrial structures are generally longer th

40、an those for apartment buildings, and the loads heavier, they commonly have fewer complexities as well as fewer interior walls, partitions, ceiling requirements, and they are not tall. In other words, simplicity of design and erection can offset the additional cost for longer span lengths and heavie

41、r loads in industrial buildings. Of course there are exceptions to these averages. The limits of variation depend on a system’s complexity, span length over ”normal” and special loading or foundation conditions. For example, the Crown Zellerbach high-rise bank and office building in San Franci

42、sco is an exception, since its structural costs were unusually high. However, in this case, the use of 60 ft steel spans and free-standing columns at the bottom, which carry the considerable earthquake loading, as well as the special foundation associated with the poor San Francisco soil conditions,

43、 contributed to the exceptionally high costs. The design was also unusual for its time and a decision had been made to allow higher than normal costs for all aspects of the building to achieve open spaces and for both function and symbolic reasons. Hence the proportion of structural to total cost pr

44、obably remained similar to ordinary buildings. The effect of spans longer than normal can be further illustrated. The ”usual” floor span range is as follows: for apartment buildings,16 to 25 ft; for office buildings,20 to 30 ft; for industrial buildings,25 to 30 ft loaded heavily at 200 to 300 psf;

45、 and garage-type structures span,50 to 60 ft, carrying relatively light(50~75 psf) loads(i.e., similar to those for apartment and office structures).where these spans are doubled, the structural costs can be expected to rise about 20 to 30 percent. To increased loading in the case of industrial bui

46、ldings offers another insight into the dependency of cost estimates on ”usual” standards. If the loading in an industrial building were to be increased to 500psf(i.e., two or three times), the additional structural cost would be on the order of another 20 to 30 percent. The reference in the above c

47、ases is for floor systems. For roofs using efficient orthotropic (flat) systems, contemporary limits for economical design appear to be on the order of 150 ft, whether of steel or prestressed concrete. Although space- frames are often used for steel or prestressed concrete. Although space-frames a

48、re often used for steel spans over 150 ft the fabrication costs begin to raise considerably. At any rate, it should be recognized that very long-span subsystems are special cases and can in themselves have a great or small effect on is added, structural costs for special buildings can vary greatly

49、from design to design. The more special the form, themore that design knowledge and creativity, as well as construction skill, will determine the potential for achieving cost efficiency. 4. Volume-Based Estimates When more accuracy is desired, estimates of costs can be based on the volume of mater

50、ials used to do a job. At first glance it might seem that the architect would be ill equipped to estimate the volume of material required in construction with any accuracy, and much less speed. But it is possible, with a moderate learning effort, to achieve some capability for making such estimates.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服