ImageVerifierCode 换一换
格式:DOC , 页数:46 ,大小:3.43MB ,
资源ID:4655400      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4655400.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学必修4试题含答案.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学必修4试题含答案.doc

1、1设角属于第二象限,且,则角属于( )A第一象限 B第二象限 C第三象限 D第四象限2给出下列各函数值:;.其中符号为负的有( )A B C D3等于( )A B C D4已知,并且是第二象限的角,那么的值等于( )A. B. C. D.5若是第四象限的角,则是( )A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角6的值( )A.小于 B.大于 C.等于 D.不存在二、填空题1设分别是第二、三、四象限角,则点分别在第_、_、_象限2设和分别是角的正弦线和余弦线,则给出的以下不等式:; ;,其中正确的是_。3若角与角的终边关于轴对称,则与的关系是_。4设扇形的周长为,面积为

2、,则扇形的圆心角的弧度数是 。5与终边相同的最小正角是_。三、解答题1已知是关于的方程的两个实根,且,求的值2已知,求的值。3化简:4已知,求(1);(2)的值。新课程高中数学训练题组(咨询13976611338)(数学4必修)第一章 三角函数(上) 综合训练B组一、选择题1若角的终边上有一点,则的值是( )A B C D 2函数的值域是( )A B C D 3若为第二象限角,那么,中,其值必为正的有( )A个 B个 C个 D个4已知,那么( )A B C D 5若角的终边落在直线上,则的值等于( )A B C或 D6已知,那么的值是( )A B C D 二、填空题1若,且的终边过点,则是第_

3、象限角,=_。2若角与角的终边互为反向延长线,则与的关系是_。3设,则分别是第 象限的角。4与终边相同的最大负角是_。5化简:=_。三、解答题1已知求的范围。2已知求的值。3已知,(1)求的值。(2)求的值。4求证:新课程高中数学训练题组(咨询13976611338)(数学4必修)第一章 三角函数(上) 提高训练C组一、选择题1化简的值是( )A B C D2若,则的值是( )A B C D3若,则等于( )A B C D4如果弧度的圆心角所对的弦长为,那么这个圆心角所对的弧长为( )A B C D5已知,那么下列命题成立的是( )A.若是第一象限角,则B.若是第二象限角,则C.若是第三象限角

4、,则D.若是第四象限角,则子曰:温故而知新,可以为师矣。6若为锐角且,则的值为( )A B C D二、填空题1已知角的终边与函数决定的函数图象重合,的值为_2若是第三象限的角,是第二象限的角,则是第 象限的角.3在半径为的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆锥形,且其轴截面顶角为,若要光源恰好照亮整个广场,则其高应为_(精确到)4如果且那么的终边在第 象限。5若集合,则=_。三、解答题1角的终边上的点与关于轴对称,角的终边上的点与关于直线对称,求之值2一个扇形的周长为,求扇形的半径,圆心角各取何值时,此扇形的面积最大?3求的值。4已知其中为锐角,求证:新课程高中数学训练题组(咨

5、询13976611338)(数学4必修)第一章 三角函数(下) 基础训练A组一、选择题1函数是上的偶函数,则的值是( )A B C. D.2将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )A B C. D.3若点在第一象限,则在内的取值范围是( )A B.C. D.4若则( )A B C D5函数的最小正周期是( )A B C D6在函数、中,最小正周期为的函数的个数为( )A个 B个 C个 D个二、填空题1关于的函数有以下命题: 对任意,都是非奇非偶函数;不存在,使既是奇函数,又是偶函数;存在,使是偶函数;对任意,都不是

6、奇函数.其中一个假命题的序号是 ,因为当 时,该命题的结论不成立.2函数的最大值为_.3若函数的最小正周期满足,则自然数的值为_.4满足的的集合为_。5若在区间上的最大值是,则=_。三、解答题1画出函数的图象。2比较大小(1);(2)3(1)求函数的定义域。(2)设,求的最大值与最小值。4若有最大值和最小值,求实数的值。新课程高中数学训练题组(咨询13976611338)(数学4必修)第一章 三角函数(下) 综合训练B组一、选择题1方程的解的个数是( )A. B. C. D.2在内,使成立的取值范围为( )A B C D 3已知函数的图象关于直线对称,则可能是( )A. B. C. D.4已知

7、是锐角三角形,则( )A. B. C. D.与的大小不能确定5如果函数的最小正周期是,且当时取得最大值,那么( )子曰:知之者不如好之者,好之者不如乐之者。A. B. C. D.6的值域是( )A B C D 二、填空题1已知是第二、三象限的角,则的取值范围_。2函数的定义域为,则函数的定义域为_.3函数的单调递增区间是_.4设,若函数在上单调递增,则的取值范围是_。5函数的定义域为_。三、解答题1(1)求函数的定义域。 (2)设,求的最大值与最小值。2比较大小(1);(2)。3判断函数的奇偶性。4设关于的函数的最小值为,试确定满足的的值,并对此时的值求的最大值。 新课程高中数学训练题组(咨询

8、13976611338)(数学4必修)第一章 三角函数(下) 提高训练C组一、选择题1函数的定义城是( )A. B.C. D.2已知函数对任意都有则等于( )A. 或 B. 或 C. D. 或3设是定义域为,最小正周期为的函数,若则等于( )A. B. C. D.4已知, ,为凸多边形的内角,且,则这个多边形是( )A正六边形 B梯形 C矩形 D含锐角菱形5函数的最小值为( )A B C D6曲线在区间上截直线及所得的弦长相等且不为,则下列对的描述正确的是( )A. B. C. D.二、填空题1已知函数的最大值为,最小值为,则函数的最小正周期为_,值域为_.2当时,函数的最小值是_,最大值是_

9、。3函数在上的单调减区间为_。4若函数,且则_。5已知函数的图象上的每一点的纵坐标扩大到原来的倍,横坐标扩大到原来的倍,然后把所得的图象沿轴向左平移,这样得到的曲线和的图象相同,则已知函数的解析式为_.三、解答题1求使函数是奇函数。2已知函数有最大值,试求实数的值。3求函数的最大值和最小值。 4已知定义在区间上的函数的图象关于直线对称,xyo-1当时,函数,其图象如图所示.(1)求函数在的表达式;(2)求方程的解. 新课程高中数学训练题组 子曰:由! 诲女知之乎! 知之为知之,不 知为不知,是知也。根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。

10、欢迎使用本资料!辅导咨询电话:13976611338,李老师。(数学4必修)第二章 平面向量 基础训练A组一、选择题1化简得( )A B C D2设分别是与向的单位向量,则下列结论中正确的是( )A B C D3已知下列命题中:(1)若,且,则或,(2)若,则或(3)若不平行的两个非零向量,满足,则(4)若与平行,则其中真命题的个数是( )A B C D4下列命题中正确的是( )A若ab0,则a0或b0 B若ab0,则abC若ab,则a在b上的投影为|a| D若ab,则ab(ab)25已知平面向量,且,则( )A B C D6已知向量,向量则的最大值,最小值分别是( )A B C D二、填空题

11、1若=,=,则=_2平面向量中,若,=1,且,则向量=_。3若,,且与的夹角为,则 。4把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是_。5已知与,要使最小,则实数的值为_。三、解答题AGEFCBD1如图,中,分别是的中点,为交点,若=,=,试以,为基底表示、2已知向量的夹角为,,求向量的模。3已知点,且原点分的比为,又,求在上的投影。4已知,当为何值时,(1)与垂直?(2)与平行?平行时它们是同向还是反向?新课程高中数学训练题组(咨询13976611338) (数学4必修)第二章 平面向量 综合训练B组一、选择题1下列命题中正确的是( )A BC D2设点,,若点在直

12、线上,且,则点的坐标为( )A B C或 D无数多个3若平面向量与向量的夹角是,且,则( )A B C D4向量,若与平行,则等于A B C D5若是非零向量且满足, ,则与的夹角是( )A B C D6设,且,则锐角为( )A B C D二、填空题1若,且,则向量与的夹角为2已知向量,若用和表示,则=_。3若,,与的夹角为,若,则的值为 4若菱形的边长为,则_。5若=,=,则在上的投影为_。三、解答题1求与向量,夹角相等的单位向量的坐标2试证明:平行四边形对角线的平方和等于它各边的平方和3设非零向量,满足,求证: 4已知,其中(1)求证: 与互相垂直;(2)若与的长度相等,求的值(为非零的常

13、数)新课程高中数学训练题组(咨询13976611338) (数学4必修)第二章 平面向量 提高训练C组一、选择题1若三点共线,则有( )A B C D2设,已知两个向量,则向量长度的最大值是( )A. B. C. D.3下列命题正确的是( )A单位向量都相等 B若与是共线向量,与是共线向量,则与是共线向量( ) C,则 D若与是单位向量,则4已知均为单位向量,它们的夹角为,那么( )A B C D5已知向量,满足且则与的夹角为A B C D6若平面向量与向量平行,且,则( )A B C D或二、填空题1已知向量,向量,则的最大值是 2若,试判断则ABC的形状_3若,则与垂直的单位向量的坐标为_

14、。4若向量则 。5平面向量中,已知,且,则向量_。三、解答题1已知是三个向量,试判断下列各命题的真假(1)若且,则(2)向量在的方向上的投影是一模等于(是与的夹角),方向与在相同或相反的一个向量2证明:对于任意的,恒有不等式3平面向量,若存在不同时为的实数和,使且,试求函数关系式。 4如图,在直角ABC中,已知,若长为的线段以点为中点,问的夹角取何值时的值最大?并求出这个最大值。子曰:知之者不如好之者,好之者不如乐之者。新课程高中数学训练题组根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!辅导咨询电话:13976611338,李老

15、师。(数学4必修)第三章 三角恒等变换基础训练A组一、选择题1已知,则( )A B C D2函数的最小正周期是( )A. B. C. D.3在ABC中,则ABC为( )A锐角三角形 B直角三角形 C钝角三角形 D无法判定4设,则大小关系( )A B C D5函数是( )A.周期为的奇函数 B.周期为的偶函数C.周期为的奇函数 D.周期为的偶函数6已知,则的值为( )A B C D二、填空题1求值:_。2若则 。3函数的最小正周期是_。4已知那么的值为 ,的值为 。5的三个内角为、,当为 时,取得最大值,且这个最大值为 。三、解答题1已知求的值.2若求的取值范围。3求值:4已知函数(1)求取最大

16、值时相应的的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到的图象.新课程高中数学训练题组子曰:由! 诲女知之乎! 知之为知之,不 知为不知,是知也。根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!辅导咨询电话:13976611338,李老师。(数学4必修)第三章 三角恒等变换 综合训练B组一、选择题1设则有( )A. B. C. D.2函数的最小正周期是( )A B C D3( )A B C D4已知则的值为( )A. B. C. D.5若,且,则( )A B C D6函数的最小正周期为( )A B C D二、填空题1已知

17、在中,则角的大小为 2计算:的值为_3函数的图象中相邻两对称轴的距离是 4函数的最大值等于 5已知在同一个周期内,当时,取得最大值为,当时,取得最小值为,则函数的一个表达式为_三、解答题1. 求值:(1);(2)。2已知,求证:3求值:。4已知函数 (1)当时,求的单调递增区间;(2)当且时,的值域是求的值.新课程高中数学训练题组(咨询13976611338)(数学4必修)第三章 三角恒等变换提高训练C组一、选择题1求值( )A B C D2函数的最小值等于( )A B C D3函数的图象的一个对称中心是( )A. B.C. D.4ABC中,则函数的值的情况( )A有最大值,无最小值 B无最大

18、值,有最小值C有最大值且有最小值 D无最大值且无最小值5 的值是( )A. B. C. D. 6当时,函数的最小值是( )A B C D二、填空题1给出下列命题:存在实数,使;若是第一象限角,且,则;函数是偶函数;函数的图象向左平移个单位,得到函数的图象其中正确命题的序号是_(把正确命题的序号都填上)2函数的最小正周期是_。3已知,则=_。4函数在区间上的最小值为 5函数有最大值,最小值,则实数_,_。三、解答题 1已知函数的定义域为,(1)当时,求的单调区间;(2)若,且,当为何值时,为偶函数2已知ABC的内角满足,若,且满足:,为的夹角.求。3已知求的值。4已知函数(1)写出函数的单调递减

19、区间;(2)设,的最小值是,最大值是,求实数的值数学4(必修)第一章 三角函数(上) 基础训练A组一、选择题 1.C 当时,在第一象限;当时,在第三象限;而,在第三象限;2.C ; ;3.B 4.A 5.C ,若是第四象限的角,则是第一象限的角,再逆时针旋转6.A 二、填空题1.四、三、二 当是第二象限角时,;当是第三象限角时,;当是第四象限角时,;2. 3. 与关于轴对称4. 5. 三、解答题1. 解:,而,则得,则,。2.解:3.解:原式 4.解:由得即(1)(2)数学4(必修)第一章 三角函数(上) 综合训练B组一、选择题 1.B 2.C 当是第一象限角时,;当是第二象限角时,;当是第三

20、象限角时,;当是第四象限角时,3.A 在第三、或四象限,可正可负;在第一、或三象限,可正可负4.B 5.D ,当是第二象限角时,;当是第四象限角时,6.B 二、填空题1.二, ,则是第二、或三象限角,而 得是第二象限角,则2.3.一、二 得是第一象限角;得是第二象限角4. 5. 三、解答题1.解: ,2.解: 3.解:(1)(2) 4.证明:右边 数学4(必修)第一章 三角函数(上) 提高训练C组一、选择题 1.D 2.A 3.B 4.A 作出图形得5.D 画出单位圆中的三角函数线6.A 二、填空题1. 在角的终边上取点2.一、或三 3. 4.二 5. 三、解答题1.解: 。 2. 解:设扇形

21、的半径为,则当时,取最大值,此时3.解: 4.证明:由得即而,得,即得而为锐角,数学4(必修)第一章 三角函数(下) 基础训练A组一、选择题 1.C 当时,而是偶函数2.C 3.B 4.D 5.D 6.C 由的图象知,它是非周期函数二、填空题 1. 此时为偶函数2. 3. 4.5. 三、解答题1.解:将函数的图象关于轴对称,得函数的图象,再将函数的图象向上平移一个单位即可。2.解:(1)(2)3.解:(1) 或 为所求。 (2),而是的递增区间 当时,; 当时,。4.解:令,对称轴为当时,是函数的递减区间,得,与矛盾;当时,是函数的递增区间,得,与矛盾;当时,再当,得;当,得 数学4(必修)第

22、一章 三角函数(下) 综合训练B组一、选择题 1.C 在同一坐标系中分别作出函数的图象,左边三个交点,右边三个交点,再加上原点,共计个2.C 在同一坐标系中分别作出函数的图象,观察:刚刚开始即时,;到了中间即时,;最后阶段即时,3.C 对称轴经过最高点或最低点,4.B 5.A 可以等于6.D 二、填空题1. 2. 3. 函数递减时,4. 令则是函数的关于原点对称的递增区间中范围最大的,即,则5 三、解答题1.解:(1) 得,或 (2),而是的递减区间 当时,; 当时,。2.解:(1);(2)3.解:当时,有意义;而当时,无意义, 为非奇非偶函数。4.解:令,则,对称轴, 当,即时,是函数的递增

23、区间,;当,即时,是函数的递减区间, 得,与矛盾;当,即时, 得或,此时。数学4(必修)第一章 三角函数(下) 提高训练C组一、选择题 1.D 2.B 对称轴3.B 4.C 5.B 令,则,对称轴, 是函数的递增区间,当时;6.A 图象的上下部分的分界线为二、填空题1. 2. 当时,;当时,;3. 令,必须找的增区间,画出的图象即可4. 显然,令为奇函数 5 三、解答题1.解:,为奇函数,则。2.解:,对称轴为,当,即时,是函数的递减区间,得与矛盾;当,即时,是函数的递增区间,得;当,即时,得; 3.解:令得,对称轴,当时,;当时,。4.解:(1),且过,则当时,而函数的图象关于直线对称,则即

24、,(2)当时, 当时, 为所求。数学4(必修)第二章 平面向量 基础训练A组一、选择题 1.D 2.C 因为是单位向量,3.C (1)是对的;(2)仅得;(3) (4)平行时分和两种,4.D 若,则四点构成平行四边形; 若,则在上的投影为或,平行时分和两种 5.C 6.D ,最大值为,最小值为二、填空题1. 2. 方向相同,3. 4.圆 以共同的始点为圆心,以单位为半径的圆5 ,当时即可三、解答题1.解:是的重心, 2.解:3.解:设,得,即 得,4.解:(1),得(2),得此时,所以方向相反。 数学4(必修) 第二章 平面向量 综合训练B组一、选择题 1.D 起点相同的向量相减,则取终点,并

25、指向被减向量,; 是一对相反向量,它们的和应该为零向量,2.C 设,由得,或,即;3.A 设,而,则4.D ,则5.B 6.D 二、填空题1. ,或画图来做2. 设,则 3. 4. 5 三、解答题1.解:设,则得,即或或2.证明:记则 3.证明: 4.(1)证明: 与互相垂直(2);而,数学4(必修) 第二章 平面向量 提高训练C组一、选择题 1.C 2.C 3.C 单位向量仅仅长度相等而已,方向也许不同;当时,与可以为任意向量; ,即对角线相等,此时为矩形,邻边垂直;还要考虑夹角4.C 5.C 6.D 设,而,则二、填空题1. 2.直角三角形 3. 设所求的向量为4. 由平行四边形中对角线的

26、平方和等于四边的平方和得 5 设三、解答题1.解:(1)若且,则,这是一个假命题 因为,仅得(2)向量在的方向上的投影是一模等于(是与的夹角),方向与在相同或相反的一个向量这是一个假命题 因为向量在的方向上的投影是个数量,而非向量。2.证明:设,则而即,得3.解:由得4. 解: 数学4(必修)第三章 三角恒等变换 基础训练A组一、选择题 1.D ,2.D 3.C 为钝角4.D ,5.C ,为奇函数,6.B 二、填空题1. 2. 3. ,4. 5 当,即时,得三、解答题1.解:。2.解:令,则3.解:原式 4.解: (1)当,即时,取得最大值 为所求(2)数学4(必修)第三章 三角恒等变换 综合

27、训练B组一、选择题 1.C 2.B 3.B 4.D 5.A 6.B 二、填空题1. ,事实上为钝角,2. 3. ,相邻两对称轴的距离是周期的一半4. 5 三、解答题1.解:(1)原式 (2)原式2.证明: 得 3.解:原式而即原式4.解:(1)为所求 (2), 数学4(必修)第三章 三角恒等变换 提高训练C组一、选择题 1.C 2.C 3.B 4.D ,而,自变量取不到端点值5.C ,更一般的结论 6.A 二、填空题1. 对于,;对于,反例为,虽然,但是 对于,2. 3. ,4. 5 ,三、解答题1. 解:(1)当时, 为递增; 为递减 为递增区间为; 为递减区间为。 (2)为偶函数,则 2.解: 得, 3.解:, 而 。4.解: (1) 为所求 (2) 46

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服