ImageVerifierCode 换一换
格式:DOC , 页数:79 ,大小:6.15MB ,
资源ID:4645494      下载积分:16 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4645494.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学选修2-3教案.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学选修2-3教案.doc

1、课题:11分类加法计数原理和分步乘法计数原理(1) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:知识与技能:理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。批 注教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解教学用具:多媒体、实物投影仪 教学方法:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。教学

2、过程:引入课题 先看下面的问题: 从我们班上推选出两名同学担任班长,有多少种不同的选法?把我们的同学排成一排,共有多少种不同的排法? 要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法. 在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理. 1 分类加法计数原理(1)提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3

3、班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?(2)发现新知分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法. 那么完成这件事共有种不同的方法.(3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下: A大学 B大学 生物学 数学 化学 会计学 医学 信息技术学 物理学 法学 工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业

4、,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件解:这名同学可以选择 A , B 两所大学中的一所在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有 5+4=9(种).变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,在第3类方案中有种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有类不同方案,在

5、每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法在第n类办法中有种不同的方法.那么完成这件事共有种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条? 练习1填空: ( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从

6、中选出 l 人来完成这件工作,不同选法的种数是 ; ( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有条教学后记:课题:11分类加法计数原理和分步乘法计数原理(2) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:知识与技能:理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。批 注教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理

7、) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解教学用具:多媒体、实物投影仪 教学方法:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。教学过程:(1)提出问题问题2.1:用前6个大写英文字母和19九个阿拉伯数字,以,,,的方式给教室里的座位编号,总共能编出多少个不同的号码?探究:你能说说这个问题的特征吗?(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法. 那么完成这件事共有种不同的方法.(3)知识应用例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多

8、少种不同的选法?探究:如果完成一件事需要三个步骤,做第1步有种不同的方法,做第2步有种不同的方法,做第3步有种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳: 完成一件事情,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法做第n步有种不同的方法.那么完成这件事共有种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3理解分类加法计数原理与分步乘法计数原理异同

9、点相同点:都是完成一件事的不同方法种数的问题不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2 .如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种? 所以根据乘法原理, 得到不同的涂色方案种数共有N =

10、3 2 11 = 6 变式1,如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种? 2若颜色是2种,4种,5种又会什么样的结果呢?练习2现有高一年级的学生 3 名,高二年级的学生 5 名,高三年级的学生 4 名 ( 1 )从中任选1 人参加接待外宾的活动,有多少种不同的选法?村去 C 村,不同 ( 2 )从 3 个年级的学生中各选 1 人参加接待外宾的活动,有多少种不同的选法? 教学后记:课题:11分类加法计数原理和分步乘法计数原理(3) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日

11、 执行时间: 年 月 日教学目标:知识与技能:理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。批 注教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解教学用具:多媒体、实物投影仪 教学方法:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。教学过程:例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.从书架上任取

12、1本书,有多少种不同的取法?从书架的第1、2、3层各取1本书,有多少种不同的取法?从书架上任取两本不同学科的书,有多少种不同的取法?【分析】要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一

13、种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.例2. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?例3.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字母必须合成一组出现,3个数字也必须合成一组出现那么这种办法共能给多少辆汽车上牌照?练习1乘积展开后共有多少项?2某电话局管辖范围内的电话号码由八位数字组成,其中前四位的数字是不变的,后四位数字都是。到 9 之间的一个数字

14、,那么这个电话局不同的电话号码最多有多少个?3从 5 名同学中选出正、副组长各 1 名,有多少种不同的选法?4某商场有 6 个门,如果某人从其中的任意一个门进人商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式? 教学后记:课题:11分类加法计数原理和分步乘法计数原理(4) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:知识与技能:理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。批注教

15、学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解教学用具:多媒体、实物投影仪 教学方法:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。教学过程:例1.给程序模块命名,需要用3个字符,其中首字符要求用字母 AG 或 UZ , 后两个要求用数字19问最多可以给多少个程序命名?分析:要给一个程序模块命名,可以分三个步骤:第 1 步,选首字符;第2步,选中间字符;第3步,选最后一个字符而首字符又可以分为两类例2. 核糖核酸(RNA)分子是在生物细胞中发现的化学成分一个 RNA 分子是一个有着数百个甚至数千个位

16、置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据总共有 4 种不同的碱基,分别用A,C,G,U表示在一个 RNA 分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关假设有一类 RNA 分子由 100 个碱基组成,那么能有多少种不同的 RNA 分子?例3.电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态因此计算机内部就采用了每一位只有 O 或 1 两种数字的记数法,即二进制为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由 8 个二

17、进制位构成问:(1)一个字节( 8 位)最多可以表示多少个不同的字符? (2)计算机汉字国标码(GB 码)包含了6 763 个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?分析:由于每个字节有 8 个二进制位,每一位上的值都有 0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解本题巩固练习:1.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通, 从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?2.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书(1)若从这些书中任取一本,有多

18、少种不同的取法?(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?3.如图一,要给,四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为() A. 180 B. 160 C. 96 D. 60图一图二图三若变为图二,图三呢?5.五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种?6(2007年重庆卷)若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( C )A5部分 B.6部分

19、C.7部分 D.8部分 课外作业: 习题 1. 1 6 , 7 , 8课堂小结1分类加法计数原理和分步乘法计数原理是排列组合问题的最基本的原理,是推导排列数、组合数公式的理论依据,也是求解排列、组合问题的基本思想.2理解分类加法计数原理与分步乘法计数原理,并加区别分类加法计数原理针对的是“分类”问题,其中各种方法相对独立,用其中任何一种方法都可以完成这件事;而分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成后才算做完这件事.3运用分类加法计数原理与分步乘法计数原理的注意点:分类加法计数原理:首先确定分类标准,其次满足:完成这件事的任何一种方法必属于某一类,并且

20、分别属于不同的两类的方法都是不同的方法,即不重不漏. 分步乘法计数原理:首先确定分步标准,其次满足:必须并且只需连续完成这n个步骤,这件事才算完成.分配问题把一些元素分给另一些元素来接受这是排列组合应用问题中难度较大的一类问题因为这涉及到两类元素:被分配元素和接受单位而我们所学的排列组合是对一类元素做排列或进行组合的,于是遇到这类问题便手足无措了事实上,任何排列问题都可以看作面对两类元素例如,把10个全排列,可以理解为在10个人旁边,有序号为1,2,10的10把椅子,每把椅子坐一个人,那么有多少种坐法?这样就出现了两类元素,一类是人,一类是椅子。于是对眼花缭乱的常见分配问题,可归结为以下小的“

21、方法结构”:.每个“接受单位”至多接受一个被分配元素的问题方法是,这里.其中是“接受单位”的个数。至于谁是“接受单位”,不要管它在生活中原来的意义,只要.个数为的一个元素就是“接受单位”,于是,方法还可以简化为.这里的“多”只要“少”.被分配元素和接受单位的每个成员都有“归宿”,并且不限制一对一的分配问题,方法是分组问题的计算公式乘以.课题:121排列(1) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。过程与方法:能运用所学的排列

22、知识,正确地解决实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决实际问题.批注教学重点:排列、排列数的概念教学难点:排列数公式的推导教学用具:多媒体、实物投影仪 教学方法:从排列数公式及推导方法中体会“化归”的数学思想教学过程:一、复习引入: 1分类加法计数原理:2.分步乘法计数原理:二、讲解新课:1问题:问题1从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加

23、上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 32=6 种,如图 1.2一1 所示图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是 ab,ac,ba,bc,ca, cb,共有 32=6 种问题2从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?可以分三个步骤来解决这

24、个问题:第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这 4 个数字中任取 1 个,有 4 种方法;第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的 3 个数字中去取,有 3 种方法;第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的 2 个数字中去取,有 2 种方法根据分步乘法计数原理,从 1 , 2 , 3 , 4 这 4 个不同的数字中,每次取出 3 个数字,按“百”“十”“个”位的顺序排成一列,共有432=24种不同的排法, 因而共可得到24个不同的三位数,如图1. 2一2 所示由此可写出所有的三位数: 123,

25、124, 132, 134, 142, 143,213,214, 231, 234, 241, 243,312,314, 321, 324, 341, 342,412,413, 421, 423, 431, 432 。同样,问题 2 可以归结为:从4个不同的元素a, b, c,d中任取 3 个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?所有不同排列是 abc, abd, acb, acd, adb, adc,bac, bad, bca, bcd, bda, bdc,cab, cad, cba, cbd, cda, cdb,dab, dac, dba, dbc, dca, dcb.共

26、有432=24种.树形图如下 a b 2排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列说明:(1)排列的定义包括两个方面:取出元素,按一定的顺序排列; (2)两个排列相同的条件:元素完全相同,元素的排列顺序也相同3排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示注意区别排列和排列数的不同:“一个排列”是指:从个不同元素中,任取个元素按照一定的顺序排成一列,不是数;“排列数”是指从个不同元素中,任取()个元素的所有排列的个数,是一个数所以符号只表示排列数,而不

27、表示具体的排列4排列数公式及其推导:由的意义:假定有排好顺序的2个空位,从个元素中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列,反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数由分步计数原理完成上述填空共有种填法,=由此,求可以按依次填3个空位来考虑,=,求以按依次填个空位来考虑,排列数公式: ()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n的阶乘)另外,我们规定 0! =1 .例1用计算器计算: (1); (2); (3)

28、.解:用计算器可得:由( 2 ) ( 3 )我们看到,那么,这个结果有没有一般性呢?即.排列数的另一个计算公式: =.即 = 例2解方程:3 解:由排列数公式得:, ,即,解得 或,且,原方程的解为例3解不等式:例4求证:(1);(2)例5化简:;说明:教学后记:课题:121排列(2) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地

29、解决的实际问题.批 注教学重点:排列、排列数的概念教学难点:排列数公式的推导教学用具:多媒体、实物投影仪 教学方法:能运用所学的排列知识,正确地解决的实际问题教学过程:例1(课本例2)某年全国足球甲级(A组)联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?解:任意两队间进行1次主场比赛与 1 次客场比赛,对应于从14个元素中任取2个元素的一个排列因此,比赛的总场次是=1413=182. 例2(课本例3)(1)从5本不同的书中选 3 本送给 3 名同学,每人各 1 本,共有多少种不同的送法? (2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送

30、法?解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取 3 个元素的一个排列,因此不同送法的种数是=543=60. (2)由于有5种不同的书,送给每个同学的1本书都有 5 种不同的选购方法,因此送给 3 名同学每人各 1 本书的不同方法种数是555=125. 例 8 中两个问题的区别在于: ( 1 )是从 5 本不同的书中选出 3 本分送 3 名同学,各人得到的书不同,属于求排列数问题;而( 2 )中,由于不同的人得到的书可能相同,因此不符合使用排列数公式的条件,只能用分步乘法计数原理进行计算例3(课本例4)用0到9这10个数字,可以组成多少个没有重复数字的三位数?

31、分析:在本问题的。到 9 这 10 个数字中,因为。不能排在百位上,而其他数可以排在任意位置上,因此。是一个特殊的元素一般的,我们可以从特殊元素的排列位置人手来考虑问题解法 1 :由于在没有重复数字的三位数中,百位上的数字不能是O,因此可以分两步完成排列第1步,排百位上的数字,可以从1到9 这九个数字中任选 1 个,有种选法;第2步,排十位和个位上的数字,可以从余下的9个数字中任选2个,有种选法(图1.2一 5) 根据分步乘法计数原理,所求的三位数有=998=648(个) .解法 2 :如图1.2 一6 所示,符合条件的三位数可分成 3 类每一位数字都不是位数有 A 母个,个位数字是 O 的三

32、位数有揭个,十位数字是 0 的三位数有揭个根据分类加法计数原理,符合条件的三位数有=648个解法 3 :从0到9这10个数字中任取3个数字的排列数为,其中 O 在百位上的排列数是,它们的差就是用这10个数字组成的没有重复数字的三位数的个数,即所求的三位数的个数是-=1098-98=648.四、课堂练习: 1若,则 ( ) 2与不等的是 ( ) 3若,则的值为 ( ) 4计算: ; 5若,则的解集是 6(1)已知,那么 ;(2)已知,那么= ;(3)已知,那么 ;(4)已知,那么 7一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?8一部纪录影片在

33、4个单位轮映,每一单位放映1场,有多少种轮映次序?答案:1. B 2. B 3. A 4. 1,1 5. 6. (1) 6 (2) 181440 (3) 8 (4) 5 7. 1680 8. 24 课外作业: 习题1.2 A组1 , 2 , 3,4,5教学总结:排列的特征:一个是“取出元素”;二是“按照一定顺序排列” ,“一定顺序”就是与位置有关,这也是判断一个问题是不是排列问题的重要标志。根据排列的定义,两个排列相同,且仅当两个排列的元素完全相同,而且元素的排列顺序也相同. 了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。教学后记:对于较复

34、杂的问题,一般都有两个方向的列式途径,一个是“正面凑”,一个是“反过来剔”前者指,按照要求,一点点选出符合要求的方案;后者指,先按全局性的要求,选出方案,再把不符合其他要求的方案剔出去了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。课题:121排列(3) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所

35、学的排列知识,正确地解决的实际问题.批 注教学重点:排列、排列数的概念教学难点:排列数公式的推导教学用具:多媒体、实物投影仪 教学方法:能运用所学的排列知识,正确地解决的实际问题教学过程:例1(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素的一个排列,因此不同送法的种数是:,所以,共有60种不同的送法(2)由于有5种不同的书,送给每个同学的1本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同

36、方法种数是:,所以,共有125种不同的送法说明:本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分送给3位同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1种,各人得到那种书相互之间没有联系,要用分步计数原理进行计算例2某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?解:分3类:第一类用1面旗表示的信号有种;第二类用2面旗表示的信号有种;第三类用3面旗表示的信号有种,由分类计数原理,所求的信号种数是:,答:一共可以表示15种不同的信

37、号例3将位司机、位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?分析:解决这个问题可以分为两步,第一步:把位司机分配到四辆不同班次的公共汽车上,即从个不同元素中取出个元素排成一列,有种方法;第二步:把位售票员分配到四辆不同班次的公共汽车上,也有种方法,利用分步计数原理即得分配方案的种数解:由分步计数原理,分配方案共有(种)答:共有576种不同的分配方案例4用0到9这10个数字,可以组成多少个没有重复数字的三位数?解法1:用分步计数原理:所求的三位数的个数是:解法2:符合条件的三位数可以分成三类:每一位数字都不是0的三位数有个,个位数字是0

38、的三位数有个,十位数字是0的三位数有个,由分类计数原理,符合条件的三位数的个数是:解法3:从0到9这10个数字中任取3个数字的排列数为,其中以0为排头的排列数为,因此符合条件的三位数的个数是-教学后记:解决排列应用题,常用的思考方法有直接法和间接法课题:121排列(4) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.

39、批 注教学重点:排列、排列数的概念教学难点:排列数公式的推导教学用具:多媒体、实物投影仪 教学方法:能运用所学的排列知识,正确地解决的实际问题教学过程:例5(1)7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列5040(2)7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理:76543217!5040(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作:余下的6个元素的全排列=720(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步 甲、乙站在两端有种;第二步 余下的5名同学进

40、行全排列有种,所以,共有=240种排列方法(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有种方法;第二步从余下的5位同学中选5位进行排列(全排列)有种方法,所以一共有2400种排列方法解法2:(排除法)若甲站在排头有种方法;若乙站在排尾有种方法;若甲站在排头且乙站在排尾则有种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有=2400种说明:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑例6.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独

41、唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?解法一:(从特殊位置考虑);解法二:(从特殊元素考虑)若选:;若不选:,则共有种;解法三:(间接法)例7 7位同学站成一排,(1)甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有种方法;再将甲、乙两个同学“松绑”进行排列有种方法所以这样的排法一共有种(2)甲、乙和丙三个同学都相邻的排法共有多少种?解:方法同上,一共有720种(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元

42、素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有种方法;将剩下的4个元素进行全排列有种方法;最后将甲、乙两个同学“松绑”进行排列有种方法所以这样的排法一共有960种方法解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2种方法,所以,丙不能站在排头和排尾的排法有种方法解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有种方法,再将其余的5个元素进行全排列共有种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有960种方法(4)甲、乙、丙

43、三个同学必须站在一起,另外四个人也必须站在一起解:将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,一共有排法种数:(种)说明:对于相邻问题,常用“捆绑法”(先捆后松)例87位同学站成一排,(1)甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法);解法二:(插空法)先将其余五个同学排好有种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有种方法,所以一共有种方法(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?解:先将其余四个同学排好有种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服