ImageVerifierCode 换一换
格式:PPTX , 页数:21 ,大小:425.37KB ,
资源ID:4621275      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4621275.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高等数学二重积分详解.pptx)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高等数学二重积分详解.pptx

1、第二节第二节 二重积分的计算二重积分的计算一一 直角坐标系中的计算方法直角坐标系中的计算方法二二 极坐标系中的计算方法极坐标系中的计算方法一 直角坐标系中的计算方法计算二重积分的基本思想:计算二重积分的基本思想:化为两次定积分化为两次定积分oxyabcd 分别用平行于分别用平行于x轴和轴和y轴的直线对区域进行分轴的直线对区域进行分割,如图。割,如图。xy 可见,除边缘可见,除边缘外,其余均为矩形,其面外,其余均为矩形,其面积为积为可以证明:可以证明:其中其中dxdy称为面积元素。称为面积元素。利用二重积分的几何意义化二重积分为二次积分(1 1)当积分区域为)当积分区域为以下均设函数以下均设函数

2、 且在且在D上连续。上连续。如图所示:如图所示:oxyabDoxyabzD相应的曲顶柱体如右图。相应的曲顶柱体如右图。在区间在区间a,b内任取一点内任取一点x,过此,过此点作与点作与yoz面平行面平行的平面,它与曲顶的平面,它与曲顶柱体相交得到一个柱体相交得到一个一个曲边梯形:一个曲边梯形:底为底为高为高为x其面积为其面积为所以根据平行截面面积为已知的立体的立体公式,所以根据平行截面面积为已知的立体的立体公式,得得oxyabzD于是,得二重积分的计算公式:于是,得二重积分的计算公式:类似地,若积分区域为类似地,若积分区域为如右图所示,如右图所示,oxyDcd则二重积分的计算则二重积分的计算公式

3、为公式为 总结:总结:二重积分的计算就是转化为二次定积二重积分的计算就是转化为二次定积分,显然,确定积分次序和积分上、下限是关分,显然,确定积分次序和积分上、下限是关键。这主要由积分区域键。这主要由积分区域D所确定。所谓所确定。所谓先积线,后积点先积线,后积点以第一种情况为例加以说明:以第一种情况为例加以说明:如图:如图:oxyabDx区间区间a,b是是x的取值范围。的取值范围。在此区间内任取一点在此区间内任取一点x,过该点自下而上作一条平行于过该点自下而上作一条平行于y轴的射线,轴的射线,先穿过的边界先穿过的边界是是y的积分下限,的积分下限,后穿过的边界后穿过的边界 是是y的积分上限。的积分

4、上限。第二种情形可同理讨论。第二种情形可同理讨论。对于其他情形,都可化为这两种情况加以转化。对于其他情形,都可化为这两种情况加以转化。如下图:如下图:oxyD1D2D3oxyD1D3D2例例1 计算计算D为直线为直线 与抛物线与抛物线所围的区域。所围的区域。不妨用两种情形分别进行计算,加以比较。不妨用两种情形分别进行计算,加以比较。法一法一 先先y后后x。解:解:积分区域积分区域D如图。如图。1oxyD 将积分区域投影到将积分区域投影到x轴上,轴上,得到得到x的范围的范围0,1.在在0,1上任取一点上任取一点x,过该点作一条平行于过该点作一条平行于y轴的射线,轴的射线,x先穿过的边界先穿过的边

5、界作作y的积分下限,的积分下限,后穿过的边界后穿过的边界 作作y的上的上限,这样就有限,这样就有所以所以法二法二oxyD 将积分区域投影到将积分区域投影到y轴上,轴上,得到得到y的范围的范围0,1.1在在0,1上任取一点上任取一点y,过该点作一条平行于过该点作一条平行于x轴的射线,轴的射线,y则先穿过的边界则先穿过的边界 为为x的下限,的下限,后穿过的边界后穿过的边界为为x的上限,的上限,于是于是所以所以 小结:小结:在二重积分的计算中,有时积分次在二重积分的计算中,有时积分次序的选择显得相当重要,因而具体计算时,应注序的选择显得相当重要,因而具体计算时,应注意观察积分区域的特征和被积函数的特

6、点,选择意观察积分区域的特征和被积函数的特点,选择恰当的积分次序,以便使计算尽可能简单。恰当的积分次序,以便使计算尽可能简单。例例2 将将 化成二次积分,化成二次积分,其中其中D由由围成。围成。解:解方程组解:解方程组得这条直线和抛物线的交点为得这条直线和抛物线的交点为(8,4),(2,-2),如右图。,如右图。oxy1)先对)先对y后对后对x积分:积分:8得得所以所以oxy2)先对)先对x后对后对y积分:积分:得得如图。如图。-24所以所以小结:显然小结:显然1)较)较2)麻烦。)麻烦。例例3 计算计算 其中其中D由由围成。围成。解:此三条直线的交点分别为解:此三条直线的交点分别为(1,1)

7、0,1),(0,0),所围区域如右。,所围区域如右。oxy1先对先对x后对后对y积分:积分:注意:注意:若先对若先对y后对后对x积分:积分:的原函数无法用初等函数表示出来,因而的原函数无法用初等函数表示出来,因而此二重积分不能计算出来。此二重积分不能计算出来。例例4 交换下列二重积分的积分次序:交换下列二重积分的积分次序:解:这是先对解:这是先对y后对后对x的积分,积分区域为的积分,积分区域为可知积分区域由可知积分区域由所围成,如下图:所围成,如下图:oxy12-2故改变积分次序后得故改变积分次序后得二、极坐标系中的计算方法 1 直角坐标系中的二重积分化为极坐标系中直角坐标系中的二重积分化

8、为极坐标系中的二重积分的二重积分 如图所示的极坐标系中如图所示的极坐标系中的积分区域的积分区域D,Ao 过极点过极点O引引射线和以极点为圆心的同心射线和以极点为圆心的同心圆,圆,它们将区域它们将区域D分成许多分成许多小区域,小区域,除去含有边界点的小区域,其余小区域除去含有边界点的小区域,其余小区域的面积为:的面积为:Ao在圆周在圆周 上任取一点上任取一点 ,其中其中设其直角坐标为设其直角坐标为 ,它们的关系为它们的关系为所以所以因此因此此公式可将直角坐标系下的二重积分化为极坐标系此公式可将直角坐标系下的二重积分化为极坐标系下的二重积分,下的二重积分,其中其中 为极坐标系中的面积元素。为极坐标

9、系中的面积元素。2 化为二次积分化为二次积分 一般均是先对一般均是先对r积分再对积分再对积分,因而主要是积分,因而主要是确定确定r r、的积分上下限,分情况讨论:的积分上下限,分情况讨论:(1)极点在区域)极点在区域D外,如图:外,如图:oAD则则 (2)极点在区域)极点在区域D的边界上,的边界上,如图。如图。oAD则则(1)极点在区域)极点在区域D内,如图:内,如图:oA则则例例5 计算计算 ,其中其中D:解:积分区域是如图所示的解:积分区域是如图所示的环域,用极坐标计算方便。环域,用极坐标计算方便。oxy12因而因而例例6 计算计算 ,其中,其中 解:积分区域是如图所解:积分区域是如图所示的圆域。示的圆域。则则oxyD2 一般地,当积分区域为圆域、环域或它们的一般地,当积分区域为圆域、环域或它们的一部分,以及被积函数中含有一部分,以及被积函数中含有 时,多采用时,多采用极坐标系下的计算会比较方便。极坐标系下的计算会比较方便。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服