ImageVerifierCode 换一换
格式:PPTX , 页数:163 ,大小:1.26MB ,
资源ID:4621160      下载积分:20 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4621160.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高等数学详细.pptx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高等数学详细.pptx

1、原函数存在定理:原函数存在定理:简言之:简言之:连续函数一定有原函数连续函数一定有原函数.问题:问题:(1)原函数是否唯一?原函数是否唯一?例例(为任意常数)为任意常数)(2)若不唯一它们之间有什么联系?若不唯一它们之间有什么联系?关于原函数的说明:关于原函数的说明:(1)若)若 ,则对于任意常数,则对于任意常数 ,(2)若)若 和和 都是都是 的原函数,的原函数,则则(为任意常数)为任意常数)证证(为任意常数)为任意常数)任任意意常常数数积积分分号号被被积积函函数数不定积分的定义:不定积分的定义:被被积积表表达达式式积积分分变变量量例例1 1 求求解解解解例例2 2 求求例例3 3 设曲线通

2、过点(设曲线通过点(1,2),且其上任一点处的),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程切线斜率等于这点横坐标的两倍,求此曲线方程.解解设曲线方程为设曲线方程为根据题意知根据题意知由曲线通过点(由曲线通过点(1,2)所求曲线方程为所求曲线方程为显然,求不定积分得到一积分曲线族显然,求不定积分得到一积分曲线族.由不定积分的定义,可知由不定积分的定义,可知结论:结论:微分运算与求不定积分的运算是微分运算与求不定积分的运算是互逆互逆互逆互逆的的.实例实例启示启示能否根据求导公式得出积分公式?能否根据求导公式得出积分公式?结论结论既然积分运算和微分运算是互逆的,因既然积分运算和微分

3、运算是互逆的,因此可以根据求导公式得出积分公式此可以根据求导公式得出积分公式.二、二、基本积分表基本积分表基基本本积积分分表表是常数是常数);说明:说明:简写为简写为例例4 4 求积分求积分解解根据积分公式(根据积分公式(2)证证等式成立等式成立.(此性质可推广到有限多个函数之和的情况)(此性质可推广到有限多个函数之和的情况)三、三、不定积分的性质不定积分的性质例例5 5 求积分求积分解解例例6 6 求积分求积分解解例例7 7 求积分求积分解解例例8 8 求积分求积分解解说明:说明:以上几例中的被积函数都需要进行以上几例中的被积函数都需要进行恒等变形,才能使用基本积分表恒等变形,才能使用基本积

4、分表.解解所求曲线方程为所求曲线方程为基本积分表基本积分表(1)不定积分的性质不定积分的性质 原函数的概念:原函数的概念:不定积分的概念:不定积分的概念:求微分与求积分的互逆关系求微分与求积分的互逆关系四、四、小结小结思考题思考题符号函数符号函数在在 内是否存在原函数?为什么内是否存在原函数?为什么?思考题解答思考题解答不存在不存在.假设有原函数假设有原函数故假设错误故假设错误所以所以 在在 内不存在原函数内不存在原函数.结论结论每一个含有每一个含有第一类间断点第一类间断点的函数都的函数都没有原函数没有原函数.练习题练习题练习题答案练习题答案问题问题解决方法解决方法利用复合函数,设置中间变量利

5、用复合函数,设置中间变量.过程过程令令一、第一类换元法一、第一类换元法在一般情况下:在一般情况下:设设则则如果如果(可微)(可微)由此可得换元法定理由此可得换元法定理第一类换元公式第一类换元公式(凑微分法凑微分法)说明说明使用此公式的关键在于将使用此公式的关键在于将化为化为观察重点不同,所得结论不同观察重点不同,所得结论不同.定理定理1 1例例1 1 求求解解(一)(一)解解(二)(二)解解(三)(三)例例2 2 求求解解一般地一般地例例3 3 求求解解例例4 4 求求解解例例5 5 求求解解例例6 6 求求解解例例7 7 求求解解例例8 8 求求解解例例9 9 求求原式原式例例1010 求求

6、解解例例1111 求求解解说明说明 当被积函数是三角函数相乘时,拆开奇当被积函数是三角函数相乘时,拆开奇次项去凑微分次项去凑微分.例例1212 求求解解例例1313 求求解解(一)(一)(使用了三角函数恒等变形)(使用了三角函数恒等变形)解解(二)(二)类似地可推出类似地可推出解解例例1414 设设 求求 .令令例例1515 求求解解问题问题解决方法解决方法改变中间变量的设置方法改变中间变量的设置方法.过程过程令令(应用(应用“凑微分凑微分”即可求出结果)即可求出结果)二、第二类换元法二、第二类换元法证证设设 为为 的原函数的原函数,令令则则则有换元公式则有换元公式定理定理2 2第二类积分换元

7、公式第二类积分换元公式例例1616 求求解解 令令例例1717 求求解解 令令例例1818 求求解解 令令说明说明(1)(1)以上几例所使用的均为以上几例所使用的均为三角代换三角代换.三角代换的三角代换的目的目的是化掉根式是化掉根式.一般规律如下:当被积函数中含有一般规律如下:当被积函数中含有可令可令可令可令可令可令 积分中为了化掉根式是否一定采用积分中为了化掉根式是否一定采用三角代换并不是绝对的,需根据被积函数的三角代换并不是绝对的,需根据被积函数的情况来定情况来定.说明说明(2)(2)例例1919 求求(三角代换很繁琐)(三角代换很繁琐)令令解解例例2020 求求解解 令令说明说明(3)(

8、3)当分母的阶较高时当分母的阶较高时,可采用可采用倒代换倒代换例例2121 求求令令解解例例2222 求求解解令令(分母的阶较高)(分母的阶较高)说明说明(4)(4)当被积函数含有两种或两种以上的当被积函数含有两种或两种以上的根式根式 时,可采用令时,可采用令 (其中(其中 为各根指数的为各根指数的最小公倍数最小公倍数)例例2323 求求解解令令基基本本积积分分表表三、小结三、小结两类积分换元法:两类积分换元法:(一)(一)凑微分凑微分(二)(二)三角代换、倒代换、根式代换三角代换、倒代换、根式代换基本积分表基本积分表(2)思考题思考题求积分求积分思考题解答思考题解答练练 习习 题题练习题答案

9、练习题答案问题问题解决思路解决思路利用两个函数乘积的求导法则利用两个函数乘积的求导法则.分部积分公式分部积分公式一、基本内容一、基本内容例例1 1 求积分求积分解(一)解(一)令令显然,显然,选择不当选择不当,积分更难进行,积分更难进行.解(二)解(二)令令例例2 2 求积分求积分解解(再次使用分部积分法)(再次使用分部积分法)总结总结 若被积函数是幂函数和正若被积函数是幂函数和正(余余)弦函数弦函数或幂函数和指数函数的乘积或幂函数和指数函数的乘积,就考虑设幂函就考虑设幂函数为数为 ,使其降幂一次使其降幂一次(假定幂指数是正整数假定幂指数是正整数)例例3 3 求积分求积分解解令令例例4 4 求

10、积分求积分解解总结总结 若被积函数是幂函数和对数函数或幂若被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就考虑设对数函函数和反三角函数的乘积,就考虑设对数函数或反三角函数为数或反三角函数为 .例例5 5 求积分求积分解解例例6 6 求积分求积分解解注意循环形式注意循环形式例例7 7 求积分求积分解解令令解解两边同时对两边同时对 求导求导,得得合理选择合理选择 ,正确使用分部积,正确使用分部积分公式分公式二、小结二、小结思考题思考题 在接连几次应用分部积分公式时,在接连几次应用分部积分公式时,应注意什么?应注意什么?思考题解答思考题解答注意前后几次所选的注意前后几次所选的 应为同类型函数

11、应为同类型函数.例例第一次时若选第一次时若选第二次时仍应选第二次时仍应选练练 习习 题题练习题答案练习题答案有理函数的定义:有理函数的定义:两个多项式的商表示的函数称之两个多项式的商表示的函数称之.一、有理函数的积分一、有理函数的积分假定分子与分母之间没有公因式假定分子与分母之间没有公因式这有理函数是这有理函数是真分式真分式;这有理函数是这有理函数是假分式假分式;利用多项式除法利用多项式除法,假分式可以化成一个假分式可以化成一个多项式和一个真分式之和多项式和一个真分式之和.例例难点难点 将有理函数化为部分分式之和将有理函数化为部分分式之和.(1)分母中若有因式)分母中若有因式 ,则分解后为,则

12、分解后为有理函数化为部分分式之和的一般规律:有理函数化为部分分式之和的一般规律:特殊地:特殊地:分解后为分解后为(2)分母中若有因式)分母中若有因式 ,其中,其中则分解后为则分解后为特殊地:特殊地:分解后为分解后为真分式化为部分分式之和的真分式化为部分分式之和的待定系数法待定系数法例例1 1代入特殊值来确定系数代入特殊值来确定系数取取取取取取并将并将 值代入值代入例例2 2例例3 3整理得整理得例例4 4 求积分求积分 解解例例5 5 求积分求积分 解解例例6 6 求积分求积分解解令令说明说明 将有理函数化为部分分式之和后,只出将有理函数化为部分分式之和后,只出现三类情况:现三类情况:多项式;

13、多项式;讨论积分讨论积分令令则则记记这三类积分均可积出这三类积分均可积出,且原函数都是初等函数且原函数都是初等函数.结论结论 有理函数的原函数都是初等函数有理函数的原函数都是初等函数.三角有理式的定义:三角有理式的定义:由三角函数和常数经过有限次四则运算由三角函数和常数经过有限次四则运算构成的函数称之一般记为构成的函数称之一般记为二、三角函数有理式的积分二、三角函数有理式的积分令令(万能置换公式)(万能置换公式)例例7 7 求积分求积分解解由万能置换公式由万能置换公式例例8 8 求积分求积分解(一)解(一)解(二)解(二)修改万能置换公式修改万能置换公式,令令解(三)解(三)可以不用万能置换公

14、式可以不用万能置换公式.结论结论 比较以上三种解法比较以上三种解法,便知万能置换不一定便知万能置换不一定是最佳方法是最佳方法,故三角有理式的计算中先考故三角有理式的计算中先考虑其它手段虑其它手段,不得已才用万能置换不得已才用万能置换.例例9 9 求积分求积分解解讨论类型讨论类型解决方法解决方法作代换去掉根号作代换去掉根号.例例1010 求积分求积分解解 令令三、简单无理函数的积分三、简单无理函数的积分例例1111 求积分求积分解解 令令说明说明 无理函数去根号时无理函数去根号时,取根指数的取根指数的最小公倍数最小公倍数.例例1212 求积分求积分解解先对分母进行有理化先对分母进行有理化原式原式

15、简单无理式的积分简单无理式的积分.有理式分解成部分分式之和的积分有理式分解成部分分式之和的积分.(注意:必须化成真分式)(注意:必须化成真分式)三角有理式的积分三角有理式的积分.(万能置换公式)(万能置换公式)(注意:万能公式并不万能)(注意:万能公式并不万能)四、小结四、小结思考题思考题将分式分解成部分分式之和时应注意什么?将分式分解成部分分式之和时应注意什么?思考题解答思考题解答分解后的部分分式必须是最简分式分解后的部分分式必须是最简分式.练习题练习题练习题答案练习题答案第四章习题课第四章习题课积分法积分法原原 函函 数数选选择择u u有有效效方方法法基基本本积积分分表表第一换元法第一换元

16、法 第二换元法第二换元法直接直接积分法积分法分部分部积分法积分法不不 定定 积积 分分几种特殊类型几种特殊类型函数的积分函数的积分一、主要内容一、主要内容1 1、原函数、原函数定义定义原函数存在定理原函数存在定理即:即:连续函数一定有原函数连续函数一定有原函数连续函数一定有原函数连续函数一定有原函数2 2、不定积分、不定积分(1)定义定义(2)微分运算与求不定积分的运算是微分运算与求不定积分的运算是互逆互逆互逆互逆的的.(3)不定积分的性质不定积分的性质3 3、基本积分表、基本积分表是常数是常数)5 5、第一类换元法、第一类换元法4 4、直接积分法、直接积分法第一类换元公式(第一类换元公式(凑

17、微分法凑微分法凑微分法凑微分法)由定义直接利用基本积分表与积分的性质求不由定义直接利用基本积分表与积分的性质求不定积分的方法定积分的方法.常见类型常见类型:6 6、第二类换元法、第二类换元法第二类换元公式第二类换元公式常用代换常用代换:7 7、分部积分法、分部积分法分部积分公式分部积分公式8.8.选择选择u u的有效方法的有效方法:LIATELIATE选择法选择法L-对数函数;对数函数;I-反三角函数;反三角函数;A-代数函数;代数函数;T-三角函数;三角函数;E-指数函数;指数函数;哪哪个在前哪个选作个在前哪个选作u.9 9、几种特殊类型函数的积分、几种特殊类型函数的积分(1)有理函数的积分

18、)有理函数的积分定义定义两个多项式的商表示的函数称之两个多项式的商表示的函数称之.真分式化为部分分式之和的真分式化为部分分式之和的待定系数法待定系数法四种类型分式的不定积分四种类型分式的不定积分此两积分都可积此两积分都可积,后者有递推公式后者有递推公式令令(2)三角函数有理式的积分三角函数有理式的积分定义定义 由三角函数和常数经过有限次四则运算由三角函数和常数经过有限次四则运算构成的函数称之一般记为构成的函数称之一般记为(3)简单无理函数的积分简单无理函数的积分讨论类型:讨论类型:解决方法:解决方法:作代换去掉根号作代换去掉根号二、典型例题二、典型例题例例1 1解解例例2 2解解例例3 3解解例例4 4解解(倒代换倒代换)例例5 5解解解得解得例例6 6解解例例7 7解解例例8 8解解例例9 9解解例例1010解解例例1111解解测测 验验 题题测验题答案测验题答案

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服