ImageVerifierCode 换一换
格式:PPTX , 页数:34 ,大小:1.22MB ,
资源ID:4621092      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4621092.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高等数学重积分应用.pptx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高等数学重积分应用.pptx

1、目录 上页 下页 返回 结束 第四节一、立体体积一、立体体积 二、曲面的面积二、曲面的面积 三、物体的质心三、物体的质心 四、物体的转动惯量四、物体的转动惯量 五、物体的引力五、物体的引力 重积分的应用 第十章 目录 上页 下页 返回 结束 1.能用重积分解决的实际问题的特点:所求量是 对区域具有可加性 用微元分析法(元素法)建立积分式 分布在有界闭域上的整体量 3.解题要点:画出积分域、选择坐标系、确定积分序、定出积分限、计算要简便 2.用重积分解决问题的方法:用重积分解决实际问题的基本原则用重积分解决实际问题的基本原则目录 上页 下页 返回 结束 一、立体体积一、立体体积 曲顶柱体的顶为连

2、续曲面则其体积为 占有空间有界域 的立体的体积为目录 上页 下页 返回 结束 任一点的切平面与曲面所围立体的体积 V.例例1分析分析:(示意图)求曲面第一步:求切平面 方程;第二步:求 与S2的交线 在xOy面上的投影,写出所围区域 D;第三步:求体积V.目录 上页 下页 返回 结束 任一点的切平面与曲面所围立体的体积 V.解解的切平面方程为它与曲面的交线在 xOy 面上的投影为(记所围域为D)在点例例1 1 求曲面曲面目录 上页 下页 返回 结束 例例2内接锥面所围成的立体的体积.解解则立体体积为求半径为a 的球面与半顶角为 的在球坐标系下空间立体所占区域为目录 上页 下页 返回 结束 二、

3、曲面的面积二、曲面的面积设光滑曲面则面积 A 可看成曲面上各点处小切平面的面积 d A 无限积累而成.设它在 D 上的投影为 d,(称为面积元素)则目录 上页 下页 返回 结束 故有曲面面积公式若光滑曲面方程为则有即目录 上页 下页 返回 结束 若光滑曲面方程为 若光滑曲面方程为隐式则则有且目录 上页 下页 返回 结束 例例3被柱面所截解解则出的面积 A.曲面在 xOy 面上投影为计算双曲抛物面目录 上页 下页 返回 结束 例例4解解 设球面方程为 球面面积元素为方法方法2利用球坐标方程.方法方法1利用直角坐标方程.(解略,祥见教材167页例1)计算半径为 a 的球的表面积.目录 上页 下页

4、返回 结束 例例5解解 地球半径 ).试计算该通信卫星覆盖面积与地球表面积的比值(已知卫星所覆盖的曲面 的方程为 运行的角速度与地球自转的角速度相同.建立如图所示坐标系.设有一颗地球同步通信卫星,距离地面的高度于是卫星所覆盖的面积为其中目录 上页 下页 返回 结束 利用极坐标,得目录 上页 下页 返回 结束 代入上式得由于 由此得卫星覆盖面积与地球表面积之比为 由此可知,使用三颗相隔 角度的通信卫星可以覆盖几乎地球全部表面.目录 上页 下页 返回 结束 三、物体的质心三、物体的质心设空间有n个质点,其质量分别由力学知,该质点系的质心坐标设物体占有空间域 ,有连续密度函数则 公式,分别位于为为即

5、:采用“大化小,常代变,近似和,取极限”可导出其质心 目录 上页 下页 返回 结束 将 分成 n 小块,将第 k 块看作质量集中于点例如,令各小区域的最大直径系的质心坐标就近似该物体的质心坐标.的质点,即得此质点在第 k 块上任取一点目录 上页 下页 返回 结束 同理可得则得形心坐标:目录 上页 下页 返回 结束 若物体为占有xOy 面上区域 D 的平面薄片,(A 为D 的面积)则它的质心坐标为其面密度 对 x 轴的 静矩静矩 对 y 轴的 静矩静矩 形心坐标形心坐标:得D 的目录 上页 下页 返回 结束 例例6和的质心.解解而之间均匀薄片求位于两圆利用对称性可知目录 上页 下页 返回 结束

6、的方程为内储有高为 h 的均质钢液,解解采用柱坐标,则炉壁方程为因此故自重,求它的质心.若炉不计炉体的其坐标为例例7一个炼钢炉为旋转体形,剖面壁线利用对称性可知质心在 z 轴上,目录 上页 下页 返回 结束 目录 上页 下页 返回 结束 四、物体的转动惯量四、物体的转动惯量设物体占有空间区域 ,有连续分布的密度函数该物体位于(x,y,z)处的微元 对 z 轴的转动惯量为 因质点系的转动惯量等于各质点的转动惯量之和,故 连续体的转动惯量可用积分计算.因此物体对 z 轴 的转动惯量:目录 上页 下页 返回 结束 类似可得:对 x 轴的转动惯量对 y 轴的转动惯量对原点的转动惯量目录 上页 下页 返

7、回 结束 如果物体是平面薄片,面密度为则转动惯量的表达式是二重积分.目录 上页 下页 返回 结束 例例8解解半圆薄片的质量的转动惯量.求半径为 a 的均匀半圆薄片对其直径建立坐标系如图,目录 上页 下页 返回 结束 解解则球体的质量例例9 9设球所占 域为(用球坐标)转动惯量.求密度为 的均匀球体对于过球心的一条轴 l 的取球心为原点,z 轴为 l 轴,目录 上页 下页 返回 结束 ,G 为引力常数五、物体的引力五、物体的引力设物体占有空间区域,物体对位于点P0(x0,y0,z0)处的单位质量质点的引力为其密度函数引力元素在三坐标轴上分量为其中目录 上页 下页 返回 结束 若求 xOy 面上的

8、平面薄片D,对点P0处的单位质量质点的引力分量,因此引力分量为 则上式改为D上的二重积分,密度函数改为 即可.例如,其中:目录 上页 下页 返回 结束 例例10 设面密度为,半径为R的圆形薄片求它对位于点解解处的单位质量质点的引力.。由对称性知引力目录 上页 下页 返回 结束 例例11对位于的单位质量质点的引力.解解点求半径为R的均匀球利用对称性知引力分量目录 上页 下页 返回 结束 为球的质量目录 上页 下页 返回 结束(t 为时间)的雪堆在融化过程中,其侧面满足方程设长度单位为厘米,时间单位为小时,设有一高度为已知体积减少的速率与侧面积成正比(比例系数 0.9),问高度为130 cm 的雪堆全部融化需要 多少小时?补充题补充题(2001考研考研)目录 上页 下页 返回 结束 侧面方程:提示提示:记雪堆体积为 V,侧面积为 S,则(用极坐标)目录 上页 下页 返回 结束 由题意知令得 因此高度为130厘米的雪堆全部融化所需的时间为 100小时.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服