ImageVerifierCode 换一换
格式:PPTX , 页数:44 ,大小:2.82MB ,
资源ID:4607665      下载积分:14 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4607665.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(专题2序列算子与灰色序列生成.pptx)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

专题2序列算子与灰色序列生成.pptx

1、专题专题2:序列算子与灰色序列生成序列算子与灰色序列生成南京航空航天大学灰色系统研究所南京航空航天大学灰色系统研究所2010,2010,南京南京2灰色系统理论课件灰色系统理论课件问题问题什么是序列算子什么是序列算子?为什么要提出序列算子为什么要提出序列算子?序列算子的构造原理是什么序列算子的构造原理是什么?已有哪些序列已有哪些序列算子算子?如何应用序列算子如何应用序列算子?3灰色系统理论课件灰色系统理论课件主要内容主要内容第二节第二节冲击扰动系统与序列算子冲击扰动系统与序列算子第三节第三节均值生成算子均值生成算子第四节第四节光滑比生成和级比生成光滑比生成和级比生成第五节第五节累加生成算子与累减

2、生成算子累加生成算子与累减生成算子第六节第六节累加生成的灰指数律累加生成的灰指数律4灰色系统理论课件灰色系统理论课件灰色系统理论是通过对原始数据的整理来寻求其变化规律的灰色系统理论是通过对原始数据的整理来寻求其变化规律的,这是一种就数这是一种就数据寻找数据的现实规律的途径据寻找数据的现实规律的途径,称之为灰色序列生成称之为灰色序列生成一切灰色序列都可以通过某种生成弱化其随机性一切灰色序列都可以通过某种生成弱化其随机性,显现规律性显现规律性.序列算子是处理数据的一种方法。序列算子是处理数据的一种方法。引言引言5灰色系统理论课件灰色系统理论课件 例例 河南省长葛县乡镇企业产值数据(1983-198

3、6年)为 X=(10155,12588,23480,35388)其增长势头很猛,1983-1986年每年平均递增51.6%,尤其是1984-1986年,每年平均递增67.7%,参与该县发展规划编制工作的各阶层人士(包括领导层、专家层、群众层)普遍认为该县乡镇企业产值今后不可能一直保持这么高的发展速度。用现有数据直接建模预测,预测结果人们根本无法接受。经过认真分析和讨论,大家认识到增长速度高主要是由于基数低,而基数低的原因则是过去对有利于乡镇企业发展的政策没有用足、用活、用好。要弱化序列增长趋势,就需要将对乡镇企业发展比较有利的现行政策因素附加到过去的年份中,为此引入二阶弱化算子,得到二阶缓冲序

4、列XD2=(27260,29547,32411,35388)用XD2建模预测得,1986-2000年该县乡镇企业产值每年平均递增9.4%,这一结果是1987年得到的,与“八五”后半期和“九五”期间该县乡镇企业发展实际基本吻合。引言引言6灰色系统理论课件灰色系统理论课件原始数据与原始数据与XD2XD2数据曲线比较数据曲线比较引言引言7灰色系统理论课件灰色系统理论课件第二节第二节 冲击扰动系统与序列算子冲击扰动系统与序列算子强化缓冲算子强化缓冲算子弱化缓冲算子弱化缓冲算子冲击扰动系冲击扰动系统预测陷阱统预测陷阱缓冲算子公理缓冲算子公理缓冲算子性质缓冲算子性质8灰色系统理论课件灰色系统理论课件定义定

5、义2.2.12.2.1 设 为系统真实行为序列,而观测到的系统行为数据序列为:其中,为冲击扰动项,则称X为冲击扰动序列.下面的讨论围绕一个总目标:由 展开2.1 2.1 冲击扰动系统预测陷阱冲击扰动系统预测陷阱9灰色系统理论课件灰色系统理论课件定义定义2.2.22.2.2 设系统行为数据序列为 ,若(1),则称 为单调增长序列;(2)1中不等号反过来成立,则称 为单调衰减序列;(3)存在 有则称 为随机振荡序列。设称 为序列 的振幅。2.2 2.2 缓冲算子公理缓冲算子公理10灰色系统理论课件灰色系统理论课件2.2 2.2 缓冲算子公理缓冲算子公理序列名称序列名称数据1数据2数据3数据4数据5

6、单调增长单调增长序列序列3581214单调衰减单调衰减序列序列151312108振荡序列振荡序列12141199.511灰色系统理论课件灰色系统理论课件2.2 2.2 缓冲算子公理缓冲算子公理 定义定义2.2.3 2.2.3 设 为系统行为数据系列,为作用于 的算子,经过算子 作用后所得序列记为 称 为序列算子,称 为一阶算子作用序列。序列算子的作用可以进行多次,相应的,若 皆为序列算子,我们称 为二阶算子,并称 为二阶算子作用序列。同理称 为三阶序列算子,并称 为三阶算子作用序列,以此类推。12灰色系统理论课件灰色系统理论课件2.2 2.2 缓冲算子公理缓冲算子公理 公理公理2.2.12.2

7、1(不动点公理)(不动点公理)设 为系统行为数据系列,为序列算子,则满足 不动点公理限定在序列算子作用下,系统行为数据序列中的数据 保持不变,即运用序列算子对系统行为数据进行调整,不改变 这一即成事实。根据定性分析的结论,亦可使 以前的若干个数据在序列算子作用下保持不变。例如,令 其中,13灰色系统理论课件灰色系统理论课件2.2 2.2 缓冲算子公理缓冲算子公理 公理公理2.2.22.2.2(信息充分利用公理)(信息充分利用公理)系统行为数据序列 中的每一个数据 都应充分的参与算子作用的全过程。信息充分利用公理限定任何序列算子都应以现有的序列中的信息为基础进行定义,不允许抛开原始数据另搞一套

8、公理公理2.2.32.2.3(解析化、规范化公理)(解析化、规范化公理)任意的 ,皆可由一个统一的 的初等解析式表达。14灰色系统理论课件灰色系统理论课件2.2 2.2 缓冲算子公理缓冲算子公理 定义定义2.2.42.2.4 称上述三个公理为缓冲算子三公理,满足缓冲算子三公理的序列算子称为缓冲算子,一阶,二阶,三阶缓冲算子作用序列称为一阶,二阶,三阶缓冲序列。定义定义2.2.5 2.2.5 设 为原始数据序列,为缓冲算子,当 分别为增长序列、衰减序列或振荡序列时:(1)若缓冲序列 比原始序列 的增长速度(或衰减速度)减缓或振幅减小,我们称缓冲算子 为弱化算子;(2)若缓冲序列 比原始序列 的

9、增长速度(或衰减速度)加快或振幅增大,则称缓冲算子 为强化算子。15灰色系统理论课件灰色系统理论课件2.3 2.3 缓冲算子的性质缓冲算子的性质 定理定理2.2.12.2.1 设 为单调增长序列,为其缓冲序列,则有 (1)为弱化算子 (2)为强化算子 即单调增长序列在弱化算子作用下数据膨胀,在强化算子作用下数据萎缩。证明:证明:设 为原始数据序列 中 到 的增长率。为缓冲序列 中 到 的增长率。16灰色系统理论课件灰色系统理论课件2.3 2.3 缓冲算子的性质缓冲算子的性质 若 为弱化算子,则 ,即 ,于是 ,即 ,反之亦然。若 为强化算子,则 ,即 ,于是 ,即 ,反之亦然。17灰色系统理论

10、课件灰色系统理论课件2.3 2.3 缓冲算子的性质缓冲算子的性质 定理定理2.2.22.2.2 设 为单调衰减序列,为其缓冲序列,则有 (1)为弱化算子 (2)为强化算子 即单调衰减序列在弱化算子作用下数据萎缩,在强化算子作用下数据膨胀。定理定理2.2.32.2.3 设 为振荡序列,为其缓冲序列,则有 (1)若 为弱化算子,则 (2)若 为强化算子,则18灰色系统理论课件灰色系统理论课件2.4 2.4 实用缓冲算子的构造实用缓冲算子的构造 定理定理 2.2.42.2.4 设原始数据序列和缓冲序列分别为 其中 则当 为单调增长序列、单调衰减序列或振荡序列时,皆为弱化算子。并称 为平均弱化缓冲算子

11、AWBO)。推论推论2.2.12.2.1 对于定理2.2.4中定义的弱化算子 ,令 则对于单调增长、单调衰减或振荡序列,皆为二阶弱化算子。19灰色系统理论课件灰色系统理论课件2.4 2.4 实用缓冲算子的构造实用缓冲算子的构造6913141812345543211213.515161820灰色系统理论课件灰色系统理论课件2.4 2.4 实用缓冲算子的构造实用缓冲算子的构造 定理定理 2.2.52.2.5 设原始数据序列和缓冲序列分别为 其中 则当 为单调增长序列和单调衰减序列时,皆为强化算子。推论推论2.2.22.2.2 对于定理2.2.5中定义的强化算子 ,令 则对于单调增长、单调衰减序列

12、皆为二阶强化算子。21灰色系统理论课件灰色系统理论课件2.4 2.4 实用缓冲算子的构造实用缓冲算子的构造 定理定理2.2.6 2.2.6 设 ,令 其中 则 对单调增长序列为强化算子,对单调衰减序列为强化算子。推论推论2.2.3 2.2.3 对于定理2.2.6中定义的 ,则 ,分别为单调增长、单调衰减序列的二阶强化算子。22灰色系统理论课件灰色系统理论课件2.4 2.4 实用缓冲算子的构造实用缓冲算子的构造 定理定理 2.2.7 2.2.7 设原始数据序列和缓冲序列分别为 其中 则当 为单调增长序列、单调衰减序列或振荡序列时,皆为弱化算子。并称 为加权平均弱化缓冲算子(WAWBO)。证明证

13、明:这里只证明单调增长序列的情况,对单调衰减序列和振荡序列类似可以证明。为单调增长序列,则 因此 ;所以,为弱化算子。23灰色系统理论课件灰色系统理论课件2.4 2.4 实用缓冲算子的构造实用缓冲算子的构造 定理定理 2.2.82.2.8 设原始数据序列和缓冲序列分别为 其中 则当 为单调增长序列、单调衰减序列或振荡序列时,皆为弱化算子。并称 为几何平均弱化缓冲算子(GAWBO)。证明证明 容易验证,满足缓冲算子三公理,因而 为缓冲算子。(1)当为单调增长序列时,因为 所以当 为单调增长序列时,为弱化缓冲算子。(2)同理,当 为单调衰减序列或振荡序列时,皆为弱化算子。24灰色系统理论课件灰色系

14、统理论课件2.4 2.4 实用缓冲算子的构造实用缓冲算子的构造 例例2.2.22.2.2 南京市农林牧渔总产值数据(19961999)为(亿元)增长速度十分缓慢,平均每年的增长率仅为2.4%,这与整个国民经济快速增长的大环境是不相适应的,长期发展下去,必将导致产业结构发展不平衡,影响国民经济的可持续增长,因此,为了能够及时准确地把握经济发展趋势,对经济的发展作科学合理的预测,必须对缓慢增长的数据加以处理,使其符合今后的发展趋势,在此基础上进行合理的预测.对数据序列进行二阶强化,得出二阶缓冲序列数据为 建立GM(1,1)模型为 时间响应式为25灰色系统理论课件灰色系统理论课件2.4 2.4 实用

15、缓冲算子的构造实用缓冲算子的构造 根据上式,计算模拟结果并列拟合效果表和预测效果表如下。由表2.2.1和表2.2.2可以看出,应用强化缓冲算子作用后的数据建模能够取得良好的模拟效果和预测效果.26灰色系统理论课件灰色系统理论课件第三节第三节 均值生成算子均值生成算子27灰色系统理论课件灰色系统理论课件第三节第三节 均值生成算子均值生成算子 在搜集数据时,常常出现空缺或者异常值。均值生成是常用的构造新数据、填补老序列空穴、生成新序列的方法。定义定义2.3.12.3.1 设序列 与 为 的一对紧邻值,称为前值,称为后值,若 为新信息,则对任意 ,称为老信息。定义定义2.3.2 2.3.2 设序列

16、在 处有空穴,记为 ,即 则称 和 为 的界值,为前界,为后界,当 由 与 生成时,称生成值为 的内点28灰色系统理论课件灰色系统理论课件第三节第三节 均值生成算子均值生成算子 定义定义2.3.32.3.3 设 和 为序列 中的一对紧邻值,若有 (1)为老信息,为新信息;(2)则称 为由新信息和老信息在生成系数(权)下的生成值,当 时,称 的生成是“重新信息、轻老信息”生成;当 时,称 的生成是“重老信息、轻新信息”生成;当 时,称 的生成是非偏生成。29灰色系统理论课件灰色系统理论课件第三节第三节 均值生成算子均值生成算子 定义定义2.3.42.3.4 设序列 为在 处有空穴 的序列,而 为

17、非紧邻均值生成数,用非紧邻均值生成数填补空穴所得的序列称为非紧邻均值生成序列。当 为新信息时,非紧邻均值生成是新老信息等权生成。在信息缺乏难以衡量新老信息对 的影响程度时,采用等权生成。定义定义2.3.5 2.3.5 设序列 ,若 则称 为紧邻均值生成数。由紧邻均值生成数构成的序列称为紧邻均值生成序列。30灰色系统理论课件灰色系统理论课件第四节第四节 光滑比生成和级比生成光滑比生成和级比生成1.1.光滑比生成光滑比生成光滑比定义光滑比定义准光滑序列准光滑序列2.2.级比生成级比生成级比定义级比定义相互关系如何相互关系如何?31灰色系统理论课件灰色系统理论课件第四节第四节 光滑比生成和级比生成光

18、滑比生成和级比生成 定义定义2.4.1 2.4.1 称 为序列 的光滑比。光滑比从反映序列的光滑性,即用序列中第 个数据与其前 个数据之和 的比值 来考察序列 中数据变化是否平稳。显然,序列 中的数据变化越平稳,其光滑比 越小。定义定义2.4.2 2.4.2 若序列满足 (1)(2)(3)则称为准光滑序列。32灰色系统理论课件灰色系统理论课件第四节第四节 光滑比生成和级比生成光滑比生成和级比生成 当序列的起点 和终点 为空穴,即 时,我们无法采用均值生成填补空缺,只有转而考虑别的方法。级比生成就是常用的填补序列端点空穴的方法。定义定义2.4.3 2.4.3 设序列 ,则称 为序列 的级比。定义

19、定义2.4.4 2.4.4 设 为端点是空穴的序列:若用 右邻的级比生成 ,用 左邻的级比生成 ,则称 和 为级比生成;按级比生成填补空穴所得的序列称为级比生成序列。33灰色系统理论课件灰色系统理论课件第四节第四节 光滑比生成和级比生成光滑比生成和级比生成 命题命题2.4.12.4.1 设 是端点为空穴的序列,若采取级比生成,则 命题命题2.4.22.4.2 级比 与前面定义的光滑比有下列关系 命题命题2.4.32.4.3 若 为递增序列,且有 (1)对于 (2)对于 即光滑比递减,则对指定的实数 ,当 时,必有34灰色系统理论课件灰色系统理论课件第四节第四节 光滑比生成和级比生成光滑比生成和

20、级比生成 例例 2.4.12.4.1 设序列 ,则对于 ,满足 。对于 ,满足当 时,35灰色系统理论课件灰色系统理论课件第五节第五节 累加生成算子与累减生成算子累加生成算子与累减生成算子 定义定义2.5.12.5.1设 为原始序列 ,为序列算子 ,其中 则称 为 的一次累加生成算子,称 阶算子 为 的 次累加生成算子,记为 ,习惯上,我们记 其中 36灰色系统理论课件灰色系统理论课件第五节第五节 累加生成算子与累减生成算子累加生成算子与累减生成算子 定义定义2.5.22.5.2设 为原始序列 ,为序列算子 ,其中 则称 为 的一次累减生成算子。阶算子 为 的 次累减生成算子。我们记 其中 定

21、理定理2.5.12.5.1累减生成算子是累加生成算子的逆算子,即 鉴于累减过程与累加过程互逆,将累减生成算子记为 。37灰色系统理论课件灰色系统理论课件原始数据序列245710一次累加生成序列26111828二次累加生成序列28193765原始序列26111828累减生成序列245710累加生成累加生成累减生成累减生成第五节第五节 累加生成算子与累减生成算子累加生成算子与累减生成算子38灰色系统理论课件灰色系统理论课件第六节第六节 累加生成的灰指数律累加生成的灰指数律 一般的非负准光滑序列经过累加生成后,都会减少随机性,呈现出近似的指数增长规律。原始序列越光滑,生成后指数规律也越明显,如某市自

22、行车销售量数据序列 和其一次累加生成序列 的曲线分别如图2.6.1和图2.6.2所示。39灰色系统理论课件灰色系统理论课件第六节第六节 累加生成的灰指数律累加生成的灰指数律定义定义2.6.1 2.6.1 设连续函数为则当(1)时,称 为齐次指数函数;(2)时,称 为非齐次指数函数。定义定义2.6.22.6.2设序列 ,若对于(1),则 称为齐次指数序列;(2),则称 为非齐次指数序列;40灰色系统理论课件灰色系统理论课件第六节第六节 累加生成的灰指数律累加生成的灰指数律 定理定理2.6.1 2.6.1 为齐次指数序列的充分必要条件是,对于恒有 成立。证明证明 :设对任意 ,则 :再设对任意 ,

23、则41灰色系统理论课件灰色系统理论课件第六节第六节 累加生成的灰指数律累加生成的灰指数律 定义定义2.6.32.6.3设序列 ,若 (1),则称序列 具有负的灰指数规律;(2),则称序列 具有正的灰指数规律 (3),则称序列 具有绝对灰度为 的灰指数规律;(4)时,称 具有准指数规律。定理定理2.6.22.6.2设 为非负准光滑序列,则 的一次累加生成序列 具有准指数规律。证明证明:按照准光滑序列的定义,对每个 ,有 ,所以 即 具有准指数规律。42灰色系统理论课件灰色系统理论课件第六节第六节 累加生成的灰指数律累加生成的灰指数律定理定理2.6.32.6.3设 为非负序列,若 具有指数规律,且 的级比 ,则有(1)(2)当 时,对每个 ;(3)当 时,对每个 。证明证明:(1)具有指数规律,且对每个 ,有则对每个43灰色系统理论课件灰色系统理论课件第六节第六节 累加生成的灰指数律累加生成的灰指数律(2)当 时,随着 的增大而递减;故对每个 。(2)当 时,随着 的增大而递减。所以,对每个 ,。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服