ImageVerifierCode 换一换
格式:PPTX , 页数:18 ,大小:326.17KB ,
资源ID:4607243      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4607243.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(FDTD算法李波2006解析.pptx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

FDTD算法李波2006解析.pptx

1、李 波2006.12.1FDTD算法2议程FDTD简介简介差分运算基本概念差分运算基本概念FDTD基本原理基本原理解的稳定性解的稳定性数值色散数值色散吸收边界条件吸收边界条件3FDTD简介时域有限差分法(FDTD,Finite-Difference Time-Domain)是1966年K.S.Yee发表在AP上的一篇论文建立起来的,后被称为Yee网格空间离散方式核心思想是把带时间变量的Maxwell旋度方程转化为差分形式,模拟出电子脉冲和理想导体作用的时域响应号称目前计算电磁学界最受关注,最时髦的算法,但还在发展完善之中国外已有多种基于FDTD算法的电磁场计算的软件:XFDTD,等等关键的三大

2、要素差分格式解的稳定性吸收边界条件FDTD的特点广泛的应用性节约运算和存储空间适合并行计算计算程序的通用性简单直观,容易掌握4差分计算基本概念设函数f(x),独立变量x有很小的增量 ,则有Taylor公式可得:由上可知:中心差分截断的误差最小,大致和由上可知:中心差分截断的误差最小,大致和h的二次方成正比的二次方成正比!5有限差分通常采用的步骤采用一定的网格划分方式离散化场域对场内的偏微分方程及各种边界条件进行差分离散化处理,建立差分格式,得到差分方程组结合选定的代数方程组的解法,编制程序,求边值问题的数值解FDTD就是按照这个步骤,结合自身的特点进行!6FDTD基本原理Maxwell旋度方程

3、可以推出此六个耦合方程Maxwell方程组7FDTD基本原理(续)Yee首先在空间上建立矩形差分网格,在时刻nt时刻,F(x,y,z)可以写成用中心差分取二阶精度:对空间离散:对时间离散:(1)(2)8FDTD基本原理(续)为了满足(1)式空间精度的要求,并满足(2)式,Yee把空间任一网格上的E和H的六个分量,如下图放置:Yee把E 和H 在时间长相差半个步长计算(为了满足精度的要求)。9FDTD基本原理(续)根据这一原则可以写出六个差分方程:其余的也如法可以写出,每个网格点上的个场分两的新值依赖于该点在前一时间步长时刻的值机该点周围的临近点上另一场量在早半个时间步长时的值。因此任一时刻可一

4、次算出一个点,并行算法可计算出多个点。通过这些运算可以交替算出电场磁场在各个时间步的值。10数值稳定性条件数值稳定性条件问题的提出时间步长t,空间步长x,y,z必须满足一定的关系,否则就使得数值表现不稳定,表现为:随着计算步数的增加,计算场量的数值会无限的增大,这种增大不是由于误差积累造成的,而是由于电磁波的传播关系被破坏造成的。所以t,x,y,z必须满足一定的关系以保证稳定性11数值稳定性的条件当当 x=y=z的时候,即:空间步的时候,即:空间步长相等的时候长相等的时候:数值稳定的条件:数值稳定的条件:而一般取:而一般取:当当 x,x,y,y,z z不相等时:不相等时:C:为光速,自由空间中

5、是根据电磁原理用数学推导出来的,这里只给出结论,即保证数值稳定的条件如下:12产生原因FDTD网格中,会导致数字波模在网格中发生改变,这种改变是由于计算网格本身引起的,而非物理因素,所以必须考虑适当选取时间步长,空间步长,传播方向,可以得到理想情况(我们实验只需考虑这种特殊情况)3-D方形网格:取波沿对角线传播 (数值稳定的极限状态),可得理想色散关系。2-D方形网格:也是沿对角线传播,(也是数值稳定的极限状态)1-D网格 (数值稳定的极限状态)数值色散13吸收边界条件问题的提出在电磁场的辐射和散射问题中,边界总是开放的,电磁场占据无限大空间,而计算机内存是有限的,所以只能模拟有限空间。即:

6、时域有限差分网格将在某处被截断。这要求在网格截断处不能引起波的明显反射,因而对向外传播的波而言,就像在无限大的空间传播一样,一种行之有效的方法是在截断处设置一种吸收边界条件。使传播到截断出的波被边界吸收而不产生反射。吸收边界条件很多,而且是研究的热点,吸收边界条件很多,而且是研究的热点,下面只给出下面只给出Engquist-Majda吸收边界条件,采用吸收边界条件,采用Mur差分格式差分格式14Engquist-Majda边界吸收条件,Mur差分格式总体虚假反射在1%5%之间一维一阶近似情形,x=0边界:二维二阶近似情形,x=0边界:15Engquist-Majda边界吸收条件,边界吸收条件,

7、Mur差分格式差分格式(续续)三维二阶近似情形,x=0边界:Mur吸收边界在角点处不适用,因为其中要用到的某些网格点位于网格区域以外,这些网格点的场量的数据无法知道,需要其它处理方法。16一维FDTD计算的例子xEy自由空间中,一维FDTD,采用一阶Mur吸收边界条件,时间步长为:高斯激励源,激励源的位置在中心网格的中心位置。Nt=12017算法的复杂度和可并行性算法的复杂度和可并行性时间复杂度与网格个数成正比空间复杂度自由空间中也是与网格个数成正比并行的可行性串行情况下,一次只能算出一个点的场值,并行情况下,可以同时计算多个点的场值每一步计算只与附近的点有数据依赖关系可以考虑利用CELL中SPU的矢量计算功能The EndThe End

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服