1、成都市棕北中学(桐梓林校区)七年级数学上册期末压轴题汇编一、七年级上册数学压轴题1如果两个角的差的绝对值等于60,就称这两个角互为“伙伴角”,其中一个角叫做另一个角的“伙伴角”(本题所有的角都指大于0小于180的角),例如,则和互为“伙伴角”,即是的“伙伴角”,也是的“伙伴角”(1)如图1O为直线上一点,则的“伙伴角”是_(2)如图2,O为直线上一点,将绕着点O以每秒1的速度逆时针旋转得,同时射线从射线的位置出发绕点O以每秒4的速度逆时针旋转,当射线与射线重合时旋转同时停止,若设旋转时间为t秒,求当t何值时,与互为“伙伴角”(3)如图3,射线从的位置出发绕点O顺时针以每秒6的速度旋转,旋转时间
2、为t秒,射线平分,射线平分,射线平分问:是否存在t的值使得与互为“伙伴角”?若存在,求出t值;若不存在,请说明理由2已知数轴上,M表示10,点N在点M的右边,且距M点40个单位长度,点P,点Q是数轴上的动点(1)直接写出点N所对应的数;(2)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向左运动,设点P、Q在数轴上的D点相遇,求点D的表示的数;(3)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向右运动,问经过多少秒时,P,Q两点重合?3如图,图中数轴的单位长度为1,请回答下列问题:(1)如果点A,B表示的
3、数是互为相反数,那么点C表示的数是_,在此基础上,在数轴上与点C的距离是3个单位长度的点表示的数是_(2)如果点D,B表示的数是互为相反数,那么点E表示的数是_(3)在第(1)问的基础上解答:若点P从点A出发,以每秒1个单位长度的速度向点B的方向匀速运动;同时,点Q从点B出发,以每秒2个单位长度的速度向点A的方向匀速运动则两个点相遇时点P所表示的数是多少?4在数轴上,点A代表的数是-12,点B代表的数是2,AB表示点A与点B之间的距离(1)若点P为数轴上点A与点B之间的一个点,且AP=6,则BP=_;若点P为数轴上一点,且BP=2,则AP=_;(2)若C点为数轴上一点,且点C到点A点的距离与点
4、C到点B的距离的和是20,求C点表示的数;(3)若点M从点A出发,点N从点B出发,且M、N同时向数轴负方向运动,M点的运动速度是每秒6个单位长度,N点的运动速度是每秒8个单位长度,当MN=2时求运动时间t的值5如图,已知点A距离数轴原点2个单位长度,且位于原点左侧,将点A先向右平移10个单位长度,再向左平移4个单位长度,得到点B,点P是数轴上的一个动点(1)在数轴上标出A、B的位置,并求出A、B之间的距离;(2)当点P在数轴上移动,满足时,求P点表示的数;(3)动点P从数轴上某一点出发,第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长
5、度,若在原点处,按以上规律移动,则点P第n次移动后表示的数为_;若按以上规律移动了次时,点P在数轴上所表示的数恰是,则动点P的初始位置K点所表示的数是_6阅读理解:定义:A,B,C为数轴上三点,若点C到点A的距离是它到点B的时距离的n(n为大于1的常数)倍,则称点C是(A,B)的n倍点,且当C是(A,B)的n倍点或(B,A)的n倍点时,我们也称C是A和B两点的n倍点例如,在图1中,点C是(A,B)的2倍点,但点C不是(B,A)的2倍点(1)特值尝试若,图1中,点_是(D,C)的2倍点(填A或B)若,如图2,M,N为数轴上两个点,点M表示的数是,点N表示的数是4,数_表示的点是(M,N)的3倍点
6、(2)周密思考:图2中,一动点P从N出发,以每秒2个单位的速度沿数轴向左运动t秒,若P恰好是M和N两点的n倍点,求所有符合条件的t的值(用含n的式子表示)(3)拓展应用:数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”若(2)中满足条件的M和N两点的所有n倍点P均处于点N的“可视距离”内,请直接写出n的取值范围(不必写出解答过程)7如图,在数轴上,点O是原点,点A,B是数轴上的点,已知点A对应的数是a,点B对应的数是b,且a,b满足(1)在数轴上标出点A,B的位置(2)在数轴上有一个点C,满足,则点C对应的数为_(3)动点P,Q分别从A,B同时出发,点P以每秒6个单位长度的速
7、度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动设运动时间为t秒()当为何值时,原点O恰好为线段PQ的中点若M为AP的中点,点N在线段BQ上,且,若时,请直接写出t的值8如图,数轴上有三个点、,表示的数分别是、,请回答:(1)若使、两点的距离与、两点的距离相等,则需将点向左移动_个单位(2)若移动、三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是_个单位;(3)若在表示的点处有一只小青蛙,一步跳个单位长小青蛙第次先向左跳步,第次再向右跳步,然后第次再向左跳步,第次再向右跳步按此规律继续跳下去,那么跳第次时,应跳_步,落脚点表示的数是_(4)
8、数轴上有个动点表示的数是,则的最小值是_9(阅读理解)若为数轴上三点,若点到的距离是点到的距离的2倍,我们就称点是()的优点例如,如图1,点表示的数为-1,点表示的数为2,表示1的点到点的距离是2,到点的距离是1,那么点是()的优点:又如,表示0的点到点的距离是1,到点的距离是2,那么点就不是()的优点,但点是()的优点(知识运用)如图2,为数轴上两点,点所表示的数为-2,点所表示的数为4(1)数所表示的点是()的优点:(2)如图3,为数轴上两点,点所表示的数为-20,点所表示的数为40.现有一只电子蚂蚁从点出发,以3个单位每秒的速度向左运动,到达点停止当为何值时,和中恰有一个点为其余两点的优
9、点?(请直接与出答案)10已知:,OB、OM、ON,是 内的射线(1)如图 1,若 OM 平分 , ON平分当射线OB 绕点O 在 内旋转时,= 度(2)OC也是内的射线,如图2,若 ,OM平分,ON平分,当射线OB绕点O在内旋转时,求的大小(3)在(2)的条件下,当射线OB从边OA开始绕O点以每秒的速度逆时针旋转t秒,如图3,若,求t的值11如图1,在内部作射线,在左侧,且(1)图1中,若平分平分,则_;(2)如图2,平分,探究与之间的数量关系,并证明;(3)设,过点O作射线,使为的平分线,再作的角平分线,若,画出相应的图形并求的度数(用含m的式子表示)12已知,O为直线AB上一点,射线OC
10、将分成两部分,若时,(1)如图1,若OD平分,OE平分,求的度数;(2)如图2,在(1)的基础上,将以每秒的速度绕点O顺时针旋转,同时射线OC以每秒的速度绕点O顺时针旋转,设运动时间为t为何值时,射线OC平分?t为何值时,射线OC平分?13已知将一副三角尺(直角三角尺和)的两个顶点重合于点,(1)如图1,将三角尺绕点逆时针方向转动,当恰好平分时,求的度数;(2)如图2,当三角尺摆放在内部时,作射线平分,射线平分,如果三角尺在内绕点任意转动,的度数是否发生变化?如果不变,求其值;如果变化,说明理由14如图,AOB150,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每秒6;射线OD从OB开始
11、,绕点O顺时针旋转,旋转的速度为每秒14,OC和OD同时旋转,设旋转的时间为t秒(0t25)(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,COD90;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC、OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请直接写出所有满足题意的t的取值,若不存在,请说明理由15已知点C在线段AB上,AC2BC,点D,E在直线AB上,点D在点E的左侧(1)若AB15,DE6,线段DE在线段AB上移动如图1,当E为BC中点时,求AD的长;点F(异于A,B,C点)在线段AB上,AF3AD,CF3,求AD的长;(2)若A
12、B2DE,线段DE在直线AB上移动,且满足关系式,求的值16如图,O是直线上的一点,是直角,平分(1)若,则_,_;(2)将图中的绕顶点O顺时针旋转至图的位置,其他条件不变,若,求的度数(用含的式子表示);(3)将图中的绕顶点O顺时针旋转至图的位置,其他条件不变,直接写出和的度数之间的关系:_(不用证明)17如图,已知,是等边三角形(三条边都相等、三个角都等于的三角形),平分(1)如图1,当时,_;(2)如图2,当时,_;(3)如图3,当时,求的度数,请借助图3填空解:因为,所以,因为平分,所以_(用表示),因为为等边三角形,所以,所以_(用表示)(4)由(1)(2)(3)问可知,当时,直接写
13、出的度数(用来表示,无需说明理由)18已知是内部的一条射线,分别为上的点,线段同时分别以的速度绕点O逆时针旋转,设旋转时间为t秒(1)如图,若,当逆时针旋转到处,若旋转时间t为2时,则_;若平分平分_;(2)如图,若分别在内部旋转时,请猜想与的数量关系,并说明理由(3)若在旋转的过程中,当时,求t的值19已知AOB,过顶点O作射线OP,若BOPAOP,则称射线OP为AOB的“好线”,因此AOB的“好线”有两条,如图1,射线OP1,OP2都是AOB的“好线”(1)已知射线OP是AOB的“好线”,且BOP30,求AOB的度数(2)如图2,O是直线MN上的一点,OB,OA分别是MOP和PON的平分线
14、,已知MOB30,请通过计算说明射线OP是AOB的一条“好线”(3)如图3,已知MON120,NOB40射线OP和OA分别从OM和OB同时出发,绕点O按顺时针方向旋转,OP的速度为每秒12,OA的速度为每秒4,当射线OP旋转到ON上时,两条射线同时停止在旋转过程中,射线OP能否成为AOB的“好线”若不能,请说明理由;若能,请求出符合条件的所有的旋转时间20如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足|a+3|+(c9)20,b1(1)a ,c ;(2)若将数轴折叠,使得A点与点C重合,则点B与数 表示的点重合(3)在(1)的条件下,若点P为数轴上一动点,其对应的数为x,
15、求当x取何值时代数式|xa|xc|取得最大值,并求此最大值(4)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点C处以2个单位/秒的速度也向左运动,在点Q到达点B后,以原来的速度向相反的方向运动,设运动的时间为t(秒),求第几秒时,点P、Q之间的距离是点C、Q之间距离的2倍?【参考答案】*试卷处理标记,请不要删除一、七年级上册数学压轴题1(1);(2)t为35或15;(3)存在,当t=或时,与互为“伙伴角”【分析】(1)按照“伙伴角”的定义写出式子,解方程即可求解;(2)通过时间t把与表示出来,根据与互为“伙伴角”,列出方程解析:(1);(2)t为35或15;(3)存在,当t=或时,与互
16、为“伙伴角”【分析】(1)按照“伙伴角”的定义写出式子,解方程即可求解;(2)通过时间t把与表示出来,根据与互为“伙伴角”,列出方程,解出时间t;(3)根据OI在AOB的内部和外部以及AOP和AOI的大小分类讨论,分别画出对应的图形,由旋转得出经过t秒旋转角的大小,角的和差,利用角平分线的定义分别表示出AOI和POI及“伙伴角”的定义求出结果即可【详解】解:(1)两个角差的绝对值为60,则此两个角互为“伙伴角”,而,设其伙伴角为,则,由图知,的伙伴角是(2)绕O点,每秒1逆时针旋转得,则t秒旋转了,而从开始逆时针绕O旋转且每秒4,则t秒旋转了,此时,又与重合时旋转同时停止,(秒),又与互为伙伴
17、角,秒或15秒答:t为35或15时,与互为伙伴角(3)若OI在AOB的内部且OI在OP左侧时,即AOPAOI,如下图所示 从出发绕O顺时针每秒6旋转,则t秒旋转了,平分,AOM=IOM=3t此时6t160解得:t射线平分,ION=MON=IOMION=()=AOB=80射线平分POM=40POI=POMIOM=403t根据题意可得即解得:t=或(不符合实际,舍去)此时AOI=6=AOP=AOMMOP=(3)40=AOI,符合前提条件t=符合题意;若OI在AOB的内部且OI在OP右侧时,即AOPAOI,如下图所示 从出发绕O顺时针每秒6旋转,则t秒旋转了,平分,AOM=IOM=3t此时6t160
18、解得:t射线平分,ION=MON=IOMION=()=AOB=80射线平分POM=40POI=IOMPOM =3t40根据题意可得即解得:t=或(不符合实际,舍去)此时AOI=6=40AOP=AOMMOP=(3)40=60AOI,不符合前提条件t=不符合题意,舍去;若OI在AOB的外部但OI运动的角度不超过180时,如下图所示 从出发绕O顺时针每秒6旋转,则t秒旋转了,平分,AOM=IOM=3t此时解得:t30射线平分,ION=MON=IOMION=()=AOB=80射线平分POM=40POI=IOMPOM =3t40根据题意可得即解得:t=(不符合前提条件,舍去)或(不符合实际,舍去)此时不
19、存在t值满足题意;若OI运动的角度超过180且OI在OP右侧时,即AOIAOP如下图所示 此时解得: t30从出发绕O顺时针每秒6旋转,则t秒旋转了,平分,AOM=IOM=1803t射线平分,ION=MON=IOMION=()=(360AOB)=100射线平分POM=50POI=IOMPOM =1303t根据题意可得即解得:t=(不符合,舍去)或(不符合,舍去)此时不存在t值满足题意;若OI运动的角度超过180且OI在OP左侧时,即AOIAOP,如下图所示 此时解得: t30从出发绕O顺时针每秒6旋转,则t秒旋转了,平分,AOM=IOM=1803t射线平分,ION=MON=IOMION=()=
20、(360AOB)=100射线平分POM=50POI=POMIOM =3t130根据题意可得即解得:t=或(不符合,舍去)此时AOI=3606=AOP=AOMMOP=180(3)50=AOI,符合前提条件t=符合题意;综上:当t=或时,与互为“伙伴角”【点睛】本题考查了角的计算、旋转的性质、一元一次方程的运用及角平分线性质的运用,解题的关键是利用“伙伴角”列出一元一次方程求解2(1)30;(2)15;(3)20秒【分析】(1)根据数轴上两点之间的距离得出结果;(2)利用时间=路程速度和算出相遇时间,再计算出点D表示的数;(3)利用时间=路程速度差算出相遇时间即解析:(1)30;(2)15;(3)
21、20秒【分析】(1)根据数轴上两点之间的距离得出结果;(2)利用时间=路程速度和算出相遇时间,再计算出点D表示的数;(3)利用时间=路程速度差算出相遇时间即可【详解】解:(1)-10+40=30,点N表示的数为30;(2)40(3+5)=5秒,-10+55=15,点D表示的数为15;(3)40(5-3)=20,经过20秒后,P,Q两点重合【点睛】本题考查了数轴上两点之间的距离,解题的关键是掌握相遇问题和追击问题之间的数量关系3(1)-1;-4或2;(2);(3)-1【分析】(1)由的长度结合点,表示的数是互为相反数,即可得出点,表示的数,由且点在点的右边可得出点表示的数,再利用数轴上两点间的距
22、离公式可求出在数轴上与点解析:(1)-1;-4或2;(2);(3)-1【分析】(1)由的长度结合点,表示的数是互为相反数,即可得出点,表示的数,由且点在点的右边可得出点表示的数,再利用数轴上两点间的距离公式可求出在数轴上与点的距离是3个单位长度的点表示的数;(2)由的长度结合点,表示的数是互为相反数,即可得出点表示的数,由且点在点的右边可得出点表示的数;(3)当运动时间为秒时,点表示的数为,点表示的数为,由点,相遇可得出关于的一元一次方程,解之即可得出的值,再将其代入中即可得出两个点相遇时点所表示的数【详解】解:(1),且点,表示的数是互为相反数,点表示的数为,点表示的数为3,点表示的数为,在
23、数轴上与点的距离是3个单位长度的点表示的数是或2故答案为:;或2(2),且点,表示的数是互为相反数,点表示的数为,点表示的数为故答案为:(3)当运动时间为秒时,点表示的数为,点表示的数为,答:两个点相遇时点所表示的数是【点睛】本题考查了一元一次方程的应用、数轴以及相反数,解题的关键是:(1)由线段的长度结合点,表示的数互为相反数,找出点表示的数;(2)由线段的长度结合点,表示的数互为相反数,找出点表示的数;(3)找准等量关系,正确列出一元一次方程4(1)8;16;(2)-15或5;(3)6或8【分析】(1)根据题目要求,P在数轴上点A与B之间,所以根据BP=AB-AP进行求解需要考虑两种情况,
24、即P在数轴上点A与B之间时和当P不在解析:(1)8;16;(2)-15或5;(3)6或8【分析】(1)根据题目要求,P在数轴上点A与B之间,所以根据BP=AB-AP进行求解需要考虑两种情况,即P在数轴上点A与B之间时和当P不在数轴上点A与B之间时当P在数轴上点A与B之间时,AP=AB-BP当P不在数轴上点A与B之间时,此时有两种情况,一种是超越A点,在A点左侧,此时BP14,不符合题目要求另一种情况是P在B点右侧,此时根据AP=AB+BP作答(2)根据前面分析,C不可能在AB之间,所以,C要么在A左侧,要么在B右侧根据这两种情况分别进行讨论计算(3)分点M在点N的左侧和点M在点N的右侧,两种情
25、况分别列出方程求解【详解】解:(1)AB总距离是2-(-12)=14,P在数轴上点A与B之间,BP=AB-AP=14-6=8,故答案为:8P在数轴上点A与B之间时,AP=AB-BP=14-2=12;当P不在数轴上点A与B之间时,因为AB=14,所以P只能在B右侧,此时BP=2,AP=AB+BP=14+2=16,故答案为:16(2)假设C为x,当C在A左侧时,AC=-12-x,BC=2-x,AC+BC=20,则-12-x+2-x=20,解得x=-15,当C在B右侧时,AC=x-(-12),BC=x-2,AC+BC=20,则x-(-12)+x-2=20,解得x=5,点C表示的数为-15或5;(3)
26、当M在点N左侧时,2-8t-(-12-6t)=2,解得:t=6;当M在点N右侧时,-12-6t-(2-8t)=2,解得:t=8,MN=2时,t的值为6或8【点睛】本题考查了动点问题,一元一次方程的应用在充分理解题目要求的基础上,可借助数轴用数形结合的方法求解在解答过程中,注意动点问题的多解可能,并针对每一种可能进行讨论分析5(1)数轴见解析,A、B之间的距离为6;(2)2或10;(3)(-1)nn;4【分析】(1)根据数轴的定义得到点A和点B表示的数,从而得到A、B之间的距离;(2)设点P表示的数为x,表示解析:(1)数轴见解析,A、B之间的距离为6;(2)2或10;(3)(-1)nn;4【分
27、析】(1)根据数轴的定义得到点A和点B表示的数,从而得到A、B之间的距离;(2)设点P表示的数为x,表示出PA和PB,令PA=2PB,得到方程,解之即可;(3)根据点P前几次表示的数找出规律即可得出结论;设动点P的初始位置K点所表示的数是m,根据中所得规律,列出方程即可求出m值【详解】解:(1)点A距离数轴原点2个单位长度,且位于原点左侧,点A表示的数为-2,将点A先向右平移10个单位长度,再向左平移4个单位长度,得到点B,点B表示的数为:-2+10-4=4,数轴如下:A、B之间的距离为:4-(-2)=6;(2)设点P表示的数为x,PA=,PB=,PA=2PB,若点P在点A左侧,解得:x=10
28、,不符合;若点P在A、B之间,解得:x=2;若点P在点B右侧,解得:x=10,综上:点P表示的数为2或10;(3)在原点处,第一次移动后点P表示的数为0-1=-1,第二次移动后点P表示的数为0-1+3=2,第三次移动后点P表示的数为0-1+3-5=-3,第四次移动后点P表示的数为0-1+3-5+7=4,.第n次移动后点P表示的数为:(-1)nn;设动点P的初始位置K点所表示的数是m,由可得:第n次移动后点P表示的数为:m+(-1)nn,移动了2n+1次时,点P在数轴上所表示的数恰是3-2n,m+(-1)2n+1(2n+1)=3-2n,即m-(2n+1)=3-2n,解得:m=4,即点P的初始位置
29、K点所表示的数是4【点睛】本题考查了数轴,两点之间的距离,数字型规律,一元一次方程,解题的关键是注意分类讨论和数形结合思想的运用,同时要善于总结规律6(1)B ;或7;(2)或或;(3)【分析】(1)直接根据新定义的概念即可得出答案;根据新定义的概念列绝对值方程求解即可得出答案;(2)设点P所表示的数为,再根据新定义的概念列方程求解析:(1)B ;或7;(2)或或;(3)【分析】(1)直接根据新定义的概念即可得出答案;根据新定义的概念列绝对值方程求解即可得出答案;(2)设点P所表示的数为,再根据新定义的概念列方程求解即可;(3)分,三种情况分别表示出PN的值,再根据PN的范围列不等式组求解即可
30、【详解】(1)由数轴可知,点A表示的数为,点B表示的数为2,点C表示的数为1,点D表示的数为0,数点A不是【D,C】的2倍点,点B是【D,C】的2倍点,故答案为:B若点C是点【M,N】的3倍点,设点C表示的数为,即或,解得或,数或7表示的点是【M,N】的3倍点(2)设点P所表示的数为,点P是M,N两点的倍点,当点P是【M,N】的n倍点时,或,解得或,当点P是【N,M】的n倍点时,或,解得或,符合条件的的值为或或(3),当时,当时,当时,点P均在点N的可视点距离之内,解得,的取值范围是【点睛】本题考查了倍点的概念,解题的关键是掌握倍点的两种不同情况7(1)见解析;(2);(3)时,点O恰好为线段
31、PQ的中点;当MN=3时 ,的值为或秒【分析】(1)由绝对值和偶次方的非负性质得出,得出,画出图形即可;(2)设点C对应的数为x,分两解析:(1)见解析;(2);(3)时,点O恰好为线段PQ的中点;当MN=3时 ,的值为或秒【分析】(1)由绝对值和偶次方的非负性质得出,得出,画出图形即可;(2)设点C对应的数为x,分两种情况,画出示意图,由题意列出方程,解方程即可;(3)分相遇前和相遇后两种情况,画出示意图,由题意列出方程,解方程即可;根据题意得到点Q、点N对应的数,列出绝对值方程即可求解【详解】(1),点A,B的位置如图所示:(2)设点C对应的数为,由题意得:C应在A点的右侧,CA=,当点C
32、在线段AB上时,如图所示:则CB=,CA-CB=,解得:;当点C在线段AB延长线上时,如图所示:则CB=,CA-CB=,方程无解;综上,点C对应的数为;故答案为:;(3)由题意得:,分两种情况讨论:相遇前,如图:,点O恰好为线段PQ的中点,解得:;相遇后,如图:,点O恰好为线段PQ的中点,解得:,此时,不合题意;故时,点O恰好为线段PQ的中点;当运动时间为t秒时,点P对应的数为(),点Q对应的数为(),M为AP的中点,点N在线段BQ上,且,点M对应的数为,点N对应的数为,或,答:当的值为或秒时,【点睛】本题考查了一元一次方程的应用、绝对值和偶次方的非负性以及数轴,解题的关键是根据题意正确画出图
33、形,要考虑全面,分类讨论,不要遗漏8(1)3;(2)3,7;(3)197,;(4)9【分析】(1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得;(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再解析:(1)3;(2)3,7;(3)197,;(4)9【分析】(1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得;(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再利用数轴的定义分别求出移动所走的距离和即可得;(3)先根据前4次归纳类推出一般规律,再列出运算式子,计算有理数的加减法即可得;(4)分,和数四种情况,再分别结合数轴的定义、化简绝
34、对值即可得【详解】(1)设需将点C向左移动x个单位,由题意得:,解得,即需将点C向左移动3个单位,故答案为:3;(2),由题意,分以下三种情况:移动点B、C,把点B向左移动2个单位,点C向左移动7个单位,此时移动所走的距离和为;移动点A、C,把点A向右移动2个单位,点C向左移动5个单位,此时移动所走的距离和为;移动点A、B,把点A向右移动7个单位,点B向右移动5个单位,此时移动所走的距离和为;综上,移动方法有3种,其中移动所走的距离和最小的是7个单位,故答案为:3,7;(3)第次跳的步数为,第次跳的步数为,第次跳的步数为,第次跳的步数为,归纳类推得:第n次跳的步数为,其中n为正整数,则第99次
35、跳的步数为,落脚点表示的数为,故答案为:197,;(4)由题意,分以下四种情况:当时,则;当时,则,;当时,则,;当时,则;综上,则的最小值是9,故答案为:9【点睛】本题考查了数轴、化简绝对值、一元一次方程的应用等知识点,熟练掌握数轴的定义是解题关键9(1)x2或x10;(2)或或10【分析】(1)设所求数为x,根据优点的定义列出方程x(2)2(4x)或x(2)2(x4),解方程即可;(2)根据题意点P在线段AB上,由解析:(1)x2或x10;(2)或或10【分析】(1)设所求数为x,根据优点的定义列出方程x(2)2(4x)或x(2)2(x4),解方程即可;(2)根据题意点P在线段AB上,由优
36、点的定义可分4种情况:P为(A,B)的优点;A为(B,P)的优点;P为(B,A)的优点;B为(A,P)的优点,设点P表示的数为y,根据优点的定义列出方程,进而得出t的值【详解】解:(1)设所求数为x,由题意得x(2)2(4x)或x(2)2(x4),解得:x2或x10;(2)设点P表示的数为y,分四种情况:P为(A,B)的优点由题意,得y(20)2(40y),解得y20,t(4020)3(秒);A为(B,P)的优点由题意,得40(20)2y(20),解得y10,t(4010)310(秒);P为(B,A)的优点由题意,得40y2y(20),解得y0,t(400)3(秒);B为(A,P)的优点40-
37、(-20)=2(40-x),解得:x=10t=(40-10) 3=10(秒)综上可知,当t为10秒、秒或秒时,P、A和B中恰有一个点为其余两点的优点故答案为:或或10【点睛】本题考查了数轴及一元一次方程的应用,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解10(1)80;(2)70;(3)26【分析】(1)根据角平分线的定义进行角的计算即可;(2)依据OM平分AOC,ON平分BOD,即可得到MOC=AOC,BON=BOD,再根据MO解析:(1)80;(2)70;(3)26【分析】(1)根据角平分线的定义进行角的计算即可;(2)依据OM平分AOC,ON平分BOD,
38、即可得到MOC=AOC,BON=BOD,再根据MON=MOC+BON-BOC进行计算即可;(3)依据AOM=(10+2t+20),DON=(160-10-2t),AOM:DON=2:3,即可得到3(30+2t)=2(150-2t),进而得出t的值【详解】解:(1)AOD=160,OM平分AOB,ON平分BOD,MOB=AOB,BON=BOD,MON=MOB+BON=AOB+BOD=(AOB+BOD)=AOD=80,故答案为:80;(2)OM平分AOC,ON平分BOD,MOC=AOC,BON=BOD,MON=MOC+BON-BOC=AOC+BOD-BOC=(AOC+BOD)-BOC=180-20
39、=70;(3)AOM=(2t+20),DON=(160-2t),又AOM:DON=2:3,3(20+2t)=2(160-2t)解得,t=26答:t为26秒【点睛】本题考查的是角平分线的定义和角的计算,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,解决本题的关键是理解动点运动情况11(1)120;(2),见解析;(3)见解析,或【分析】(1)根据角平分线的性质得到,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角解析:(1)120;(2),见解析;(3)见解析,或【分析】(1)根据角平分线的性质得到,再结合已知条件
40、即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角平分线的性质结合已知条件进行角度之间的加减运算,分类讨论得出结论即可【详解】解:(1), ,平分平分,故答案为:120;(2)证明:平分,;(3)如图1,当在的左侧时,平分,为的平分线,;如图2,当在的右侧时,平分,为的平分线,综上所述,的度数为或【点睛】本题主要考查了角平分线的性质与角度之间的加减运算,关键在于根据图形分析出各角之间的数量关系12(1)90;(2)s;12s【分析】(1)由角平分线的定义结合平角的定义可直接求解;(2)结合角平分线的定义,平角的定义列方程,解方程结可求解;结合角平分线的
41、定义,平角的定义列方程解析:(1)90;(2)s;12s【分析】(1)由角平分线的定义结合平角的定义可直接求解;(2)结合角平分线的定义,平角的定义列方程,解方程结可求解;结合角平分线的定义,平角的定义列方程,解方程结可求解【详解】解:(1)OD平分AOC,OE平分COB,COD=AOC,COE=BOC,AOC+BOC=180,DOE=COD+COE=90;(2)由题意得:DOE=90,当OC平分DOE时,COD=COE=45,45+60-3t+9t+60=180,解得t=,故t为s时,射线OC平分DOE;由题意得:BOE=60,当OC平分BOE时,COE=COB=30,30+3t+90+2(120-9t)=180,解得t=12,故t为12s时,射线OC平分BOE【点睛】本题主要考查一元一次方程的应用,角平分
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100