ImageVerifierCode 换一换
格式:DOC , 页数:27 ,大小:1.20MB ,
资源ID:4588542      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4588542.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(制动系统设计.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

制动系统设计.doc

1、制动系统设计272020年4月19日文档仅供参考,不当之处,请联系改正。第七章 制动系统设计制动系是汽车的一个重要的组成部分。它直接影响汽车的行驶安全性。为了保证汽车有良好的制动效能,应该合理地确定汽车的制动性能及制动系结构。7.1 制动动力学7.1.1 稳定状态下的加速和制动 加速力和制动力经过轮胎和地表的接触面从车辆传送到路面。惯性力作用于车辆的重心,引起一阵颠簸。在这个过程中当刹车时,前后轮的负载各自增加或减少;而当加速时,情况正好相反。制动和加速的过程只能经过纵向的加速度ax加以区分。下面,我们先来分析一辆双轴汽车的制动过程。 最终产生结果的前后轮负载和,在制动过程中,图7.1随着静止

2、平衡和制动减速的条件而变为: (7.1a) (7.1b)设作用于前后轴的摩擦系数分别为fV和fh,那么制动力为: (7.2a) (7.2b)图7.1双轴汽车的刹车过程它们的总和便是作用于车辆上的减速力。 (7.3)对于制动过程,fV和fh是负的。如果要求两轴上的抓力相等,这种相等使 fVfhax/g,理想的制动力分配是: (7.4) (7.5)这是一个抛物线Fxh(Fxv)和参数ax的参数表现。在图7.1的右半部分,显示了一辆普通载人汽车的理想制动力分配。实践中,向两边分配制动力一般被选用来防止过早的过度制动,或是由刹车片摩擦偏差而引起的后轮所死,因为后轮锁死后将几乎无法抓地,车辆将会失去控制

3、。然而防抱死刹车系统将会减轻这个问题。当然,每一个负载状态都有它各自的理想制动力分配。如果所有负载状态都必须由一个固定的分配去应对,那么最重要的条件往往就是空车载司机的情况。虽然,固定的分配在更多负载时无法实现最优化的制动力分配,b线显示了当后轴的制动力未超过理想值直到最大减速度为0.8g时的制动力分配情况。弯曲的分配曲线可经过如下方法应用。图 7.2 半挂车的刹车过程情况(c)使用一个后轴限压阀,情况(d)使用减压阀。那些负载变化巨大的车辆,比如说卡车,或火车站货车及很多前轮驱动车,都有减压阀,而且带有一个可变的突变点,具体要看静止时的轴上负载(所谓的“制动力调节器”)。在一辆双轴车上,轮子

4、在制动中的负载只取决于减速度,而不取决于设定的制动力分配。但这对于有三个或以上轴的车辆来说并不适用。例如拖车,图7.2,高度协调了拖车接点的hk,h1和h2,拖拉机和拖车的重心,设定的制动力分配决定了连接力Fxk和F2k,从而决定了各轴上力的分布。这里建立的制定过程等式依然有效,对于加速,加速度为正值。7.2、制动系统设计与匹配的总布置设计硬点或输入参数新车型总体设计时能够基本估算如下基本设计参数, 这些参数作为制动系统的匹配和优化设计的输入参数.已知参数A车型B车型轴距(mm)18402450整车整备质量(Kg)830922满载质量(Kg)14101502空载时质心距前轴中心线的距离(mm)

5、864.61242空载时质心高度(mm)500500满载时质心距前轴中心线的距离(mm)978.71462满载时质心高度(mm)7307307.3、理想的前、后制动器制动力分配曲线7.3.1 基本理论(1) 地面对前、后车轮的法向反作用力在分析前、后轮制动器制动力分配比例以前,首先了解地面作用于前、后车轮的法向反作用力。图7.3.1由图7.3.1,对后轮接地点取力矩得式中:地面对前轮的法向反作用力;汽车重力;汽车质心至后轴中心线的距离;汽车质量;汽车质心高度;汽车减速度。对前轮接地点取力矩,得式中 地面对后轮的法向反作用力;汽车质心至前轴中心线的距离。则可求得地面法向反作用力为 (7.3.1)

6、(2) 前、后制动器制动力分配曲线在任何附着系数的路面上,前、后车轮同时抱死的条件是:前、后轮制动器制动力之和等于附着力;而且前、后轮制动器制动力分别等于各自的附着力,即:消去变量,得 (7.3.2)7.3.2 计算算例与计算结果由上述结果能够分别得出车型A和车型B的前、后车轮同时抱死时前、后制动器制动力的关系曲线理想的前、后轮制动器制动力分配曲线,简称I曲线。(1) 车型B的I曲线下图为车型B空载和满载时候的I曲线(N)(2) 车型A的I曲线下图分别为车型A空载、满载的I曲线(N)7.4、前、后轮制动器制动力矩的确定7.4.1车型B制动器的制动力矩计算车型B所采用的为:前面为盘式制动器,后面

7、为鼓式制动器。下面就两种制动器分别进行制动力矩的计算。已知制动总泵的参数如下:总泵缸径22.22mm总泵压力87.7Kgf(1) 盘式制动器的制动力矩计算(a) 基本参数缸径51.1mm摩擦块面积35.9cm2摩擦块厚度10mm摩擦块有效厚度9mm有效半径97.7mm制动盘厚度12mm(b) 计算依据假定衬块的摩擦表面全部与制动盘接触,且各处单位压力分布均匀,则制动器的制动力矩为:式中摩擦系数;单侧制动块对制动盘的压紧力;作用半径(c) 计算结果下面为盘式制动器的制动力矩与摩擦系数之间的关系曲线。(Nm) 由上图能够看出,当摩擦系数在0.350.42之间时,盘式制动器所能提供的摩擦力矩在120

8、5Nm1447Nm之间。当f0.38时,鼓式制动器提供的摩擦力矩为1309Nm。(2) 鼓式制动器的制动力矩计算(a) 基本参数缸径19.05mm制动鼓直径220mm制动蹄片包角110制动蹄片宽度40mm(b) 计算依据在摩擦衬片表面取一横向微元面积,由鼓作用在微元面积上的法向力为:对于紧蹄:对于松蹄:其中(c) 计算结果下图为鼓式制动器所能提供的制动力矩摩擦系数曲线。(Nm) 由上图能够看出,摩擦系数在0.350.42之间时,制动力矩在524Nm706.53Nm之间。当f0.38时,鼓式制动器提供的摩擦力矩为598.316Nm。(3) 确定同步附着系数经过上述关于制动器的制动力矩的计算,能够

9、得到前、后制动器之间的制动力分配的比例: 经过这个曲线与I曲线的交点处的附着系数为同步附着系数。7.4.2确定车型A的制动器制动力矩(1) 基本原理 选定同步附着系数0,确定为0.7。并用下列计算前、后轮制动力矩的比值。然后,根据汽车满载在柏油、混凝土路面上紧急制动到前轮抱死,计算出前轮制动器的最大制动力矩M1max;在根据前、后轮制动力矩的比值计算出后轮制动器的最大制动力矩M2max。(2) 基本参数已知参数CH6370轴距(mm)2450整车整备质量(Kg)870满载质量(Kg)1502.2空载时质心距前轴中心线的距离(mm)1242空载时质心高度(mm)500满载时质心距前轴中心线的距离

10、(mm)1462满载时质心高度(mm)730同步附着系数0.7(3) 计算结果所得参数CH63700.619满载时前轮制动器的最大制动力矩M1max1771.7Nm满载时后轮制动器的最大制动力矩M2max1124 Nm应急制动时,后桥制动力矩1430Nm前桥制动力矩2323 Nm7.4.3 车型A的制动器改进结果前桥制动力矩为2323 Nm,后桥制动力矩1430Nm。即所采用的盘式制动器制动力矩为2323/2 =1161.5Nm,鼓式制动器为1430/2=715Nm。经过确定前、后轮制动器的最大制动力矩,能够用7.3中提及的公式,用改变制动分泵的直径来改变原来制动器的制动力矩。能够得出制动分泵

11、改变情况如下:摩擦系数f改动后盘式制动器轮缸直径(m)改动后鼓式制动器轮缸直径(m)0.380.0480.021在车型A上,前桥采用盘式制动器,后桥采用鼓式制动器。盘式制动器的缸径为48mm,鼓式制动器的缸径为21mm。7.5、比例阀的设计由于,对于具有固定比值的前、后制动器制动力的制动系特性,其实际制动力分配曲线与理想的制动力分配曲线相差很大,附着效率低。因此,现代汽车均装有制动力调节装置,可根据制动强度,载荷等因素来改变前、后制动器制动力的比值,使之接近于理想制动力分配曲线,满足制动法规的要求。7.5.1 基本参数空载满载质量(Kg)9921502轴荷分配(Kg)489/503606/89

12、6质心至前轴中心线的距离(m)1.2181.445质心至后轴中心线的距离(m)1.2321.005质心高度(m)0.50.730.7g前后轴荷分配(N)5834/32019109/56120.8 g前后轴荷分配(N)6019/30179548/5174由上述参数,用前面讨论过的盘式、鼓式制动器的计算方法,能够得出以下结果:前后空载0.7g时理想制动力(N)40842241输入压力(MPa)8.595满载0.7g时理想制动力(N)63773929输入压力(MPa)8.5957.5.2 GMZ1的校核经GZM1调节后,汽车在空、满载时的状态如下:后空载输出压力(MPa)2.495制动器所输出的制动

13、力(N)1513满载输出压力(MPa)8.595制动器所输出的制动力(N)5174如下图:那么能够得出,空载的时候,经比例阀调节后,后面的制动器提供的制动力是小于当时情况下的地面所能提供的制动力的;满载的时候,经比例阀调节后,后面的制动器提供的制动力是大于当时情况下的地面所能提供的制动力的。7.5.3 GZM2的校核经GZM2调节后,结果如下:后空载输出压力(MPa)2.885制动器所输出的制动力(N)1749满载输出压力(MPa)8.595制动器所输出的制动力(N)5174同样,空载的时候,经比例阀调节后,后面的制动器提供的制动力是小于当时情况下的地面所能提供的制动力的;满载的时候,经比例阀

14、调节后,后面的制动器提供的制动力是大于当时情况下的地面所能提供的制动力的。7.5.4新曲线经过上面的计算能够看出,GZM1和GZM2能够满足0.7g时空载时的要求,可是不满足在满载时候的要求。那么,理想的调节曲线如下:能够得出实际的新曲线,如下:上图中,1、4为GZM2曲线,2、3为新曲线。比较上述图表,我们能够得出以下结论;如下表对照可得:空载状态GMZ1调节后GMZ2调节后新曲线理想调节状态输入压力(MPa)8.5958.5958.5958.595输出压力(MPa)2.4952.8853.6963.696制动器提供的制动力(N)1513174922412241减速度6.076.3266.8

15、66.86制动距离40.7393636满载状态GMZ1调节后GMZ2调节后新曲线理想调节状态输入压力(MPa)8.5958.5958.5958.595输出压力(MPa)8.5958.59576.48制动器提供的制动力(N)5174517442443929减速度6.866.866.866.86制动距离36363636新曲线更贴近理想的调节状态,也更能充分的利用地面附着系数。7.6、总泵的校核由于相对与原车,前、后制动器轮缸直径发生了变化,因此需要校核原车总泵的容积是否满足改动后的容积要求。7.6.1基本参数改动前, 盘式制动器轮缸缸径,容积;鼓式制动器轮缸缸径,容积;总泵的缸径为,前腔容积,后腔

16、容积;改动后, 盘式制动器轮缸缸径,容积;鼓式制动器轮缸缸径,容积;总泵的缸径为;前腔容积,后腔容积;改动前盘式制动器轮缸缸径51.1mm鼓式制动器轮缸缸径19.05mm总泵的缸径为22.22mm前活塞位移16.5 mm后活塞位移12 mm改动后盘式制动器轮缸缸径48 mm鼓式制动器轮缸缸径21 mm7.6.2基本理论如果原总泵的前、后腔容量满足制动器的需要,那么就认为原总泵是满足要求的,反之,就认为是不满足。7.6.3校核结果参数结果2个盘式制动器所需制动液(mL)1.082个鼓式制动器所需制动液(mL)5.542总泵前腔容积(mL)6.398总泵后腔容积(mL)4.653由上能够得出,前、

17、后腔的容积是满足前、后制动器的需要的。7.7法规要求7.7.1 GB12676-1999法规要求由于GB12676-1999制动法规要求 发动机脱开的0型试验性能要求。空、满载试验车辆分别按6.6.2.1a)和6.6.2.2a)规定的试验方法进行,在规定的车速下,各类车辆试验结果必须达到下表规定的最低性能要求。车辆类型试验车制动初速度v,Km/h制动距离Smax,m充分发出的平均减速度MFDDmin,m/s2最大控制力,NM1805.8500那么其规定的制动距离为:50.667m。 下面为车型A在GB12676-1999法规要求下,其制动距离和充分发出的平均减速度。制动距离(m)36充分发出的

18、平均减速度MFDDmin,m/s26.86由上能够得出,是符合GB12676-1999法规要求的。7.8 GB 7258-1997法规要求GB 7258-1997法规要求:汽车、无轨电车和四轮农用运输车的行车制动,必须采用双管路或多管路,当部分管路失效时,剩余制动效能仍能保持原规定值的30以上。下面为车型A前失效和后失效的情况下,剩余制动效能占原规定值的比值。前失效时,剩余制动效能占原规定值的比值38.6后失效时,剩余制动效能占原规定值的比值61.4能够看出,是符合GB 7258-1997法规要求的。7.9、结论经过上面的分析能够得到:7.9.1 理论曲线下面为前、后制动器匹配后,整车的理想I曲线和曲线。7.9.1匹配参数同步附着系数0.7前、后制动器制动力矩比值0.619(1) 制动系统重新匹配的结果摩擦系数0.38盘式制动器轮缸直径48mm鼓式制动器轮缸直径21mm总泵缸径22.22mm(2) GP阀特性曲线GP阀的特性曲线上图。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服