ImageVerifierCode 换一换
格式:DOC , 页数:111 ,大小:7.80MB ,
资源ID:4581483      下载积分:20 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4581483.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(自控理论实验实验指导书培训资料.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

自控理论实验实验指导书培训资料.doc

1、 自控理论实验实验指导书培训资料 110 2020年4月19日 文档仅供参考 目 录 一.自动控制理论实验指导 概 述…………………………………………………………………………………………………………2 实验一 典型环节的电路模拟与软件仿真研究 …………………………………………………………5 实验二 典型系统动态性能和稳定性分析………………………………………………………………11 实验三 典型环节(或系统)的频率特性测量……………………………………………………………15 实验四 线性系统串联校正…………………………………

2、……………………………………………19 实验五 典型非线性环节的静态特性……………………………………………………………………23 实验六 非线性系统相平面法……………………………………………………………………………28 实验七 非线性系统描述函数法…………………………………………………………………………34 实验八 极点配置全状态反馈控制………………………………………………………………………38 实验九 采样控制系统动态性能和稳定性分析的混合仿真研究………………………………………44 实验十 采样控制系统串联校正的混合仿真研究………………………………………………………4

3、8 二.自动控制理论对象实验指导 实验一 直流电机转速控制实验…………………………………………………………………………52 实验二 温度控制实验……………………………………………………………………………………55 实验三 水箱液位控制实验………………………………………………………………………………57 三.自动控制理论软件说明 概 述 ………………………………………………………………………………………………………59 安装指南及系统要求………………………………………………………………………………………63 功能使用说明…………………………………………………

4、……………………………………………64 使用实例……………………………………………………………………………………………………72 概 述 一.实验系统功能特点 1.系统能够按教学需要组合,满足”自动控制原理”课程初级与高级实验的需要。配备ACCC-I实验台、上位机(包含相应软件)及USB2.0通讯线就能完成与软件仿真、混合仿真有关的实验必须配备。 2.ACCC-I实验台内含有实验必要的电源、非线性与高阶电模拟单元以及几物理对象,可根据教学实验需要进行灵活组合,构成各种典型环节与系统。另外,ACCT-01A面板内还可含有数据处理单元,用于数据采集、输出以及和上位机的通讯

5、 3.配备PC微机作操作台时,将高效率支持”自动控制原理”的教学实验。系统提供界面友好、功能丰富的上位机软件。PC微机在实验中,除了满足软件仿真需要外,又可成为测试所需的虚拟仪器、测试信号发生器以及具有很强柔性的数字控制器。 4.系统的硬件、软件设计,充分考虑了开放型、研究型实验的需要。除了指导书所提供的13个实验外,还可自行设计实验。 二.系统构成 实验系统由上位PC微机(含实验系统上位机软件)、ACCC-I实验台、USB2.0通讯线等组成。ACCC-I实验台内装有以C8051F060芯片(含数据处理系统软件)为核心构成的数据处理卡,经过USB口与PC微机连接。 1.

6、ACCC-I实验台简介 ACCC-I控制理论实验台主要由ACCT-01A自动控制理论和计算机控制技术、ACCT-02物理对象——电机转速与温度控制、ACCT-03物理对象——液位控制等3个部分组成。 其中ACCT-01A自动控制理论和计算机控制技术由电源部分U1单元、元器件单元U2、数据处理单元U3、非线性单元U5~U7以及模拟电路单元U8~U16等共15个单元组成。 (1) 电源单元U1 包括电源开关、保险丝、+5V、-5V、+15V、-15V、0V以及1.3V~15V可调电压的输出,它们提供了实验设备所需的所有工作电源。 (2)元器件单元U2 单元提供了实验所需的电容、电阻与

7、电位器,另提供插接电路供放置自己选定大小的元器件。 (3)数据处理单元U3 内含以C8051F060为核心组成的数据处理卡(含软件),经过USB口与上位PC进行通讯。内部包含八路A/D采集输入通道和两路D/A输出通道。与上位机一起使用时,可同时使用其中两个输入和两个输出通道。结合上位机软件,用以实现虚拟示波器、测试信号发生器以及数字控制器功能。 (4)非线性环节单元U5、U6和U7 U5,U6,U7分别用于构成不同的典型非线性环节。 单元U5可经过拨键S4选择具有死区特性或间隙特性的非线性环节模拟电路。 单元U6为具有继电特性的非线性环节模拟电路。 单元U7为具有饱和特性的非线性

8、环节模拟电路。 (5)模拟电路单元U8~U16 U8~U16为由运算放大器与电阻,电容等器件组成的模拟电路单元。其中U8为倒相电路,实验时一般见作反号器。U9~U16的每个单元内,都有用场效应管组成的锁零电路和运放调零电位器。 2.系统上位机软件的功能与使用方法,详见。 三.自动控制理论实验系统实验内容 1. 典型环节的电路模拟与软件仿真研究; 2. 典型系统动态性能和稳定性分析; 3. 典型环节(或系统)的频率特性测量; 4. 线性系统串联校正; 5. 典型非线性环节的静态特性; 6. 非线性系统相平面法;

9、 7. 非线性系统描述函数法; 8. 极点配置线性系统全状态反馈控制; 9. 采样控制系统动态性能和稳定性分析的混合仿真研究; 10.采样控制系统串联校正的混合仿真研究。 要完成上列全部实验,必须配备上位计算机。 物理对象实验 1.直流电机转速控制实验 2.温度控制实验 3.液位控制实验 四.实验注意事项 1.实验前U9~U16单元内的运放需要调零。 2.运算放大器边上的锁零点G接线要正确。不需要锁零时(运放构成环节中不含电容或输入信号为正弦波时),必须把G与-15V相连;在需要锁零时,必须与其输入信号同步的锁零信号相连。如在采用PC产生的经D/A通道输出的信号O

10、1作为该环节或系统的输入时,运放的锁零信号G应连U3单元中锁零信号G1;类似地,如采用PC产生的信号O2作输入,则锁零信号G应连U3单元中锁零信号G2。锁零主要用于对电容充电后需要放电的场合,一般不需要锁零。 3.在设计和连接被控对象或系统的模拟电路时,要特别注意,实验台上的运放都是反相输入的,因此对于整个系统以及反馈的正负引出点是否正确都需要仔细考虑,必要时接入反号器。 4.作频率特性实验和采样控制实验时,必须注意只用到其中1路A/D输入和1路D/A输出,具体采用”I1~I8”中哪一个通道,决定于控制箱上的实际连线。 5.上位机软件提供线性系统软件仿真功能。在作软件仿真时,无论是一个环

11、节、或是几个环节组成的被控对象、或是闭环系统,在利用上位机界面作实验时,都必须将开环或闭环的传递函数都转化成下面形式,以便填入参数ai, bj 其中 , 。 如出现 的情况,软件仿真就会出错,必须设法避免。如实验一,在作理想比例微分(PD)环节的软件仿真实验时就会遇到此问题,因为此时 可见该W(s)分子中s的阶高于分母的,直接填入参数仿真,即出现”非法操作”的提示。具体避免方法请参阅该实验附录。 6.受数据处理单元的数据处理速率限制,作频率特性实验和采样控制实验时,在上位机界面上操作”实验参数设置”必须注意频率点和采样控制频率的选择。对于频率特性实验,应满足ω<200/sec,以

12、免引起过大误差。类似地,对于采样控制实验,采样控制周期应不小于5 ms。 7.本采集设备的上位机软件,A/D和D/A输出部分,需要注意的一些事项。本数据采集系统有8路A/D输入,2路D/A输出,对于8路A/D输入将其分为四组,因为一般我们用到两路同时输出或同时输入。I1、I2为一组A/D输入,I3、I4为一组A/D输入,I5、I6为一组A/D输入,I7、I8为一组A/D输入。在这四组A/D输入中,I1、I3、I5、I7为每组A/D输入中的第一路,I2、I4、I6、I8为每组A/D输入中的第二路。这个在实验三中,做频率特性实验要求比较严格,在每个实验当中,我们能够随意选择任一组A/D输入,和任

13、一路D/A输出。 实验一 典型环节的电路模拟与软件仿真研究 一.实验目的 1.经过实验熟悉并掌握实验装置和上位机软件的使用方法。 2.经过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。 二.实验内容 1.设计各种典型环节的模拟电路。 2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。 3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。 三.实验步骤 1.熟悉实验设备,利用实验台上的模拟电路单元,参考本实验附录

14、设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。注意实验接线前必须先将实验台上电,以对运放仔细调零。然后断电,再接线。接线时要注意不同环节、不同测试信号对运放锁零的要求。在输入阶跃信号时,除比例环节运放可不锁零(G可接-15V)也可锁零外,其余环节都需要考虑运放锁零。 2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。 在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。为了利用上位机提供的虚拟示波器与信号发生器功能,以比例环节为例,此时将Ui连到实验台数据处理单元U3中

15、的D/A输出通道O1,将Uo连到实验台数据处理单元U3中A/D输入通道I1,将运放的锁零G连数据处理单元U3的锁零信号G1,并连好数据处理单元U3至上位机的USB2.0通信线。接线完成,经检查无误,再上电,启动上位机程序,进入主界面。界面上的操作步骤如下: ①按通道接线情况完成通道设置,经过上位机界面中”通道选择” 选择A/D输入通道I1作为环节的输出,选择D/A输出通道O1作为环节的输入.再将D/A输出通道O1直接连接A/D输入通道I2(显示信号源发出信号的波形)。不同的通道,图形显示控件中波形的颜色将不同。 ②硬件接线完毕后,检查USB口通讯连线和实验台电源后,运行上位机软件程序,如果

16、有问题请求指导教师帮助。 ③进入实验模式后,先对显示模式进行设置:选择”X-t模式”;选择”T/DIV”为1s/1HZ。 ④完成上述实验设置,然后设置实验参数,在界面的右边能够设置系统测试信号参数,选择”测试信号”为”周期阶跃信号”,选择”占空比”为50%,选择”T/DIV”为”1000ms”, 选择”幅值”为”3V”,能够根据实验需要调整幅值,以得到较好的实验曲线,将”偏移”设为”0”。以上除必须选择”周期阶跃信号”外,其余的选择都不是唯一的。要特别注意,除单个比例环节外,对其它环节和系统都必须考虑环节或系统的时间常数,如仍选择”输入波形占空比”为50%,那么”T/DIV”至少是环节或系

17、统中最大时间常数的6~8倍。这样,实验中才能观测到阶跃响应的整个过程。 ⑤以上设置完成后,按LabVIEW上位机软件中的”RUN”运行图标来运行实验程序,然后点击右边的”Start”按钮来启动实验,动态波形得到显示,直至周期响应过程结束,如上述参数设置合理就能够在主界面图形显示控件中间得到环节的”阶跃响应”。 ⑥利用LabVIEW软件中的图形显示控件中光标”Cursor”功能(详见软件使用说明书)观测实验结果;改变实验环节参数,重复⑤的操作;如发现实验参数设置不当,看不到”阶跃响应”全过程,可重复④、⑤的操作。 ⑦按实验报告需要,将图形结果保存为位图文件,操作方法参阅软件使用说明书。

18、3.分析实验结果,完成实验报告。 四.附录 1.比例(P)环节的传递函数、方块图、模拟电路和阶跃响应 比例环节的传递函数为: 其方块图、模拟电路和阶跃响应,分别如图1.1.1、图1.1.2和图1.1.3所示,于是,实验参数取R0=100k,R1=200k,R=10k。 2.积分(I)环节的传递函数、方块图、模拟电路和阶跃响应 积分环节的传递函数为: 其方块图、模拟电路和阶跃响应,分别如图1.2.1、图1.2.2和图1.2.3所示,于是,实验参数取R0=100k,C=1uF,R=10k。

19、 3.比例积分(PI)环节的传递函数、方块图、模拟电路和阶跃响应 比例积分环节的传递函数为: 其方块图、模拟电路和阶跃响应,分别如图1.3.1、图1.3.2和图1.3.3所示,于是 , 实验参数取R0=200k,R1=200k,C=1uF,R=10k。 4.比例微分(PD)环节的传递函数、方块图、模拟电路和阶跃响应 比例微分环节的传递函数为: 其方块图和模拟电路分别如图1.4.1、图1.4.2所示。其模拟电路是近似的(即实际PD环节),取,则有,实验参数取R0=10k,R1=10k,R2=10k,R

20、3=1K,C=10uF,R=10k。 对应理想的和实际的比例微分(PD)环节的阶跃响应分别如图1.4.3a、图1.4.3b所示。 实际PD环节的传递函数为: (供软件仿真参考) 5.惯性环节的传递函数、方块图、模拟电路和阶跃响应 惯性环节的传递函数为: 其方块图、模拟电路和阶跃响应,分别如图1.5.1、图1.5.2和图1.5.3所示,其中,实验参数取R0=200k,R1=200k,C=1uF,R=10k。 6.比例积分微分(P

21、ID)环节的传递函数、方块图、模拟电路和阶跃响应 比例积分微分环节的传递函数为: 其方块图和模拟电路分别如图1.6.1、图1.6.2所示。其模拟电路是近似的(即实际PID环节),取,将近似上述理想PID环节有,实验参数取R0=200k,R1=100k,R2=10k,R3=1k,C1=1uF,C2=10uF,R=10k。 对应理想的和实际的比例积分微分(PID)环节的阶跃响应分别如图1.6.3 a、图1.6.3 b所示。 实际PID环节的传递函数为: (供软件仿真参考) 实验二 典型系统动态性能和稳定

22、性分析 一.实验目的 1.学习和掌握动态性能指标的测试方法。 2.研究典型系统参数对系统动态性能和稳定性的影响。 二.实验内容 1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 2.观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三.实验步骤 1.熟悉实验台,利用实验台上的模拟电路单元,参考本实验附录中的图2.1.1和图2.1.2,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路(如用U9、U15、U11和U8连成)。注意实验接线前必须对运放仔细调

23、零。接线时要注意对运放锁零的要求。 2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。 3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响。 4.利用实验备观上的模拟电路单元,参考本实验附录中的图2.2.1和图2.2.2,设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路(如用U9、U15、U11、U10和U8连成)。 5.利用实验设备观测该三阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。 6.改变该三阶系统模拟电路的参数,观测参数对系统稳定性与动态指标的影响。 7.分析实验结果,完成实验报告。 注意:以上实验步骤中的2

24、3与5、6的具体操作方法,请参阅”实验一”的实验步骤2;实验步骤7的具体操作方法,请参阅”实验一”的实验步骤3,这里不再赘述。 四.附录 1.典型二阶系统 典型二阶系统的方块结构图如图2.1.1所示: 其开环传递函数为, 其闭环传递函数为,其中, 取二阶系统的模拟电路如图2.1.2所示: 该系统的阶跃响应如图2.1.3所示:Rx接U4单元的220K电位器,改变元件参数Rx大小,研究不同参数特征下的时域响应。2.1.3a,2.1.3b,2.1.3c分别对应二阶系统在过阻尼,临界阻尼,欠阻尼三种情况下的阶跃响应曲线:

25、 2.典型三阶系统 典型三阶系统的方块结构图如图2.2.1所示: 其开环传递函数为,其中,取三阶系统的模拟电路如图2.2.2所示: 该系统开环传递函数为,,Rx的单位为KW。 系统特征方程为,根据劳斯判据得到: 系统稳定 012 根据K求取Rx。这里的Rx可利用模拟电路单元的220K电位器,改变Rx即可改变K2,从而改变K,得到三种不同情况下的实验结果。 该系统的

26、阶跃响应如图2.2.3 a、2.2.3b 和2.2.3c所示,它们分别对应系统处于不稳定、临界稳定和稳定的三种情况。 实验三 典型环节(或系统)的频率特性测量 一.实验目的 1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。 2.学习根据实验所得频率特性曲线求取传递函数的方法。 二.实验内容 1.用实验方法完成一阶惯性环节的频率特性曲线测试。 2.用实验方法完成典型二阶系统开环频率特性曲线的测试。 3.根据测得的频率特性曲线求取各自的传递函数。 4.用软件仿真方法求取一阶惯性环节频率特性

27、和典型二阶系统开环频率特性,并与实验所得结果比较。 三.实验步骤 1.熟悉实验设备上的信号源,掌握改变正弦波信号幅值和频率的方法。利用实验设备上的模拟电路单元,参考本实验附录设计并连接”一阶惯性环节”模拟电路(如用U9+U8连成)或”两个一阶惯性环节串联”的模拟电路(如用U9+U11连成)。 2.利用实验设备完成一阶惯性环节的频率特性曲线测试。 在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。为了利用上位机提供的虚拟示波器与信号发生器功能,以一阶惯性环节为例,此时将Ui连到实验台数据处理单元U3的D/A输出通道O1或O2,将Uo连到实验台的数据处理

28、单元U3的A/D输入端通道I1~I8中的任一通道(假设选择I1),然后再将你选择的D/A输出通道测试信号O1(如果选择的是O1)连接到A/D输入端I2(显示信号源发出的环节输入波形),然后连接设备与上位机的USB通信线。接线完成,经检查无误,再给实验设备上电后,启动上位机程序,进入主界面。界面上的操作步骤如下: ①完成上面的硬件接线后,检查USB连线和实验设备电源,然后打开LabVIEW软件上位机界面程序。 ②进入LabVIEW实验界面后,根据上面的实验接线选择通道,选择I1、I2通道作为输入通道,测试信号O1作为输出信号。 ③测试信号01的设置,”幅值”为5(能够根据实验结果波形来调整

29、),”测试信号”为正弦波。”偏移”为零 ④完成实验设置后,点击”下载数据”按钮,将设置的测试信号发送到数据采集系统。然后点击实验界面右下角的”Start”按钮来启动频率特性测试。测试程序将会从低频率计算到高频,界面右下角有个测试进度条,它将显示测试的进度。最后测试出来频率特性的Bode Plot、Nyquist Plot将在相应的图形控件中显示出来,在同一界面中我们能够同时看到频率特性的两种显示模式:一种是伯德图”Bode Plot”,它包括幅频特性和相频特性;另一种模式就是乃奎斯特图”Nyquist Plot”,又称极坐标图。 ⑤按实验报告需要,将图形结果保存为位图文件,操作方法参阅软件

30、使用说明书 3.利用实验设备完成典型二阶系统开环频率特性曲线的测试。具体操作方法参阅步骤2。 4.参考附录的提示,根据测得的频率特性曲线(或数据)求取各自的传递函数。 6.分析实验结果,完成实验报告。 四.附录 1.实验用一阶惯性环节传递函数参数、电路设计及其幅相频率特性曲线: 对于的一阶惯性环节,其幅相频率特性曲线是一个半圆,见图3.1。 取代入,得 在实验所得特性曲线上,从半园的直径,可得到环节的放大倍数K,K=。在特性曲线上取一点,能够确定环节的时间常数T,。 实验用一阶惯性环节传递函数为,其中参数为R0=200,R1=200,C=0.1uF,其模拟电路设计

31、参阅图1.5.2。 2.实验用典型二阶系统开环传递函数参数、电路设计及其幅相频率特性曲线: 对于由两个惯性环节组成的二阶系统,其开环传递函数为 令上式中 ,能够得到对应的频率特性 二阶系统开环传递函数的幅相频率特性曲线,如图3.2.1所示。 根据上述幅相频率特性表示式,有 (3—1) 其中 故有 (3—2) (3—3) 如已测得二阶环节的幅相频率特性,则、、和均可从实验曲线得到,于是可按式(

32、3—1)、(3—2)和(3—3)计算K、T、ξ,并可根据计算所得T、ξ 求取T1和T2 实验用典型二阶系统开环传递函数为: 其电路设计参阅图3.2.2。 3.对数幅频特性和对数相频特性 上述幅相频率特性也可表示为对数幅频特性和对数相频特性,图3.3.1和图3.3.2分别给出上述一阶惯性环节和二阶环节的对数幅频特性和对数相频特性: 图3.3.1 图3.3.2 注意:此时横轴w采用了以10为底的对数坐标,纵轴则分别以分贝和度为单位。 实验四 线性系统串联校正 一.实验目的

33、1.熟悉串联校正装置对线性系统稳定性和动态特性的影响。 2.掌握串联校正装置的设计方法和参数调试技术。 二.实验内容 1.观测未校正系统的稳定性和动态特性。 2.按动态特性要求设计串联校正装置。 3.观测加串联校正装置后系统的稳定性和动态特性,并观测校正装置参数改变对系统性能的影响。 4.对线性系统串联校正进行计算机仿真研究,并对电路模拟与数字仿真结果进行比较研究。 三.实验步骤 1.利用实验设备,设计并连接一未加校正的二阶闭环系统的模拟电路,完成该系统的稳定性和动态特性观测。提示: ①设计并连接一未加校正的二阶闭环系统的模拟电路,可参阅本实验附录的图4.1.

34、1和图4.1.2,利用实验台上的U9、U11、U15和U8单元连成。 ②经过对该系统阶跃响应的观察,来完成对其稳定性和动态特性的研究,如何利用实验设备观测阶跃特性的具体操作方法,可参阅实验一的实验步骤2。 2.参阅本实验的附录,按校正目标要求设计串联校正装置传递函数和模拟电路。 3.利用实验设备,设计并连接一加串联校正后的二阶闭环系统的模拟电路,完成该系统的稳定性和动态特性观测。提示: ①设计并连接一加串联校正后的二阶闭环系统的模拟电路,可参阅本实验附录的图4.4.4,利用实验台上的U9、U14、U11、U15和U8单元连成 ②经过对该系统阶跃响应的观察,来完成对其稳定性和动态特性的

35、研究,如何利用实验设备观测阶跃特性的具体操作方法,可参阅”实验一”的实验步骤2。 4.改变串联校正装置的参数,对加校正后的二阶闭环系统进行调试,使其性能指标满足预定要求。提示: 5.分析实验结果,完成实验报告。 四.附录 1.方块图和模拟电路 实验用未加校正二阶闭环系统的方块图和模拟电路,分别如图4.1.1和图4.1.2所示: 其开环传递函数为: 其闭环传递函数为: 式中 ,, 故未加校正时系统超调量为 , 调节时间为 s, 静态速度误差系数KV等于该I型系统的开环增益 1/s, 2.

36、串联校正的目标 要求加串联校正装置后系统满足以下性能指标: (1)超调量 (2)调节时间(过渡过程时间)s (3)校正后系统开环增益(静态速度误差系数) 1/s 3.串联校正装置的时域设计 从对超调量要求能够得到 % ,于是有 。 由 s 能够得到 。 因为要求 1/s,故令校正后开环传递函数仍包含一个积分环节,且放大系数为25。 设串联校正装置的传递函数为D(s),则加串联校正后系统的开环传递函数为 采用相消法,令 (其中T为待确定参数),能够得到加串联校正后的开环传递函数 这样,加校正后系统的闭环传递函数为 对校正后二

37、阶系统进行分析,能够得到 综合考虑校正后的要求,取 T=0.05s ,此时 1/s,,它们都能满足校正目标要求。最后得到校正环节的传递函数为 从串联校正装置的传递函数能够设计其模拟电路。有关电路设计与校正效果请参见后面的频域设计。 4.串联校正装置的频域设计 根据对校正后系统的要求,能够得到期望的系统开环传递函数的对数频率特性。 根据未加校正系统的开环传递函数,能够得其相应的对数频率特性。 从期望的系统开环传递函数的对数幅频特性,减去未加校正系统开环传递函数的对数幅频特性,能够得到串联校正装置的对数幅频特性。 从串联校正装置的

38、对数幅频特性,能够得到它的传递函数: 从串联校正装置的传递函数能够设计其模拟电路。图4.4.4给出已加入串联校正装置的系统模拟电路。 在图4.4.4中,串联校正装置电路的参数可取R1=390,R2=R3=200,R4=10,C=4.7uF。 (2)传递函数法 期望的系统开环传递函数除以未加校正二阶闭环系统开环传递函数,能够得到串联校正装置的传递函数。 同样地,可从串联校正装置的传递函数设计其模拟电路,如图4.4.4所示。 实验五 典型非线

39、性环节的静态特性 一.实验目的 1.了解并掌握典型非线性环节的静态特性。 2.了解并掌握典型非线性环节的电路模拟研究方法。 二.实验内容 1.完成继电型非线性环节静特性的电路模拟研究。 2.完成饱和型非线性环节静特性的电路模拟研究。 3.完成具有死区特性的非线性环节静特性的电路模拟研究。 4.完成具有间隙特性的非线性环节静特性的电路模拟研究。 三.实验步骤 1.利用实验设备,设计并连接继电型非线性环节的模拟电路,完成该环节的静态特性测试;并改变参数,观测参数对静态特性的影响。 参阅本实验附录1,从图5.1.1和图5.1.2可知,利用实验台上的单元U

40、6即可获得实验所需继电型非线性环节的模拟电路。单元电路中双向稳压管的稳压值为5.1V,改变U6中的电位器的电阻接入值,即可改变继电特性参数M,M随阻值减小而减小。 可利用周期斜坡或正弦信号测试非线性环节的静态特性,下面分两种情况说明测试方法。 在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。此时将Ui连到实验台U3单元的D/A输出通道O1或O2(假设选择O1),将Uo连到实验台的U3单元的A/D输入端通道I1~I8中的任一通道(假设选择CH1),再将你选择的D/A输出通道O1连接

41、到A/D输入端I2,然后连接设备与上位机的USB通信线。接线完成,经检查无误,再给实验设备上电后,启动上位机程序,进入主界面。界面上的操作步骤如下: ①完成上面的硬件接线后,检查USB连线和实验台电源,然后打开LabVIEW软件上位机界面程序。 ②进入LabVIEW实验界面后,先对显示进行设置:选择显示模式(在LabVIEW图形控件的右边),可先选择”X-t模式”,或选择”X-Y模式”,或同时显示两种模式.在两种不同显示方式下都观察一下非线性的特性;选择”T/DIV量程”(在实验界面的右边框里)为1HZ/1S。在选择显示模式为”X-t模式”时。 ③测试信号01的设置,先选择”测试信号”为

42、正弦波,然后设置信号的幅值5(不是唯一的,可根据实验曲线调整大小),”测试信号”也能够为周期斜坡信号,显示模式能够同时用两种显示模式显示非线性静特性,也能够按照需要选择任一种显示模式,如”X-T 模式”或者是”X-Y 模式”。 对”正弦波”:选择”幅值”为”5V”,选择”偏移”为0V,选择”T/DIV”为”1HZ/1S”。 对”周期斜坡信号”:选择”幅值”为”10V”,选择”偏移”为-5V,选择”T/DIV”为”1HZ/1S”。 ④以上设置完成后,按照上面的步骤③设置好信号后,点击”下载数据”按钮,将设置的测试信号发送到数据采集系统。按”Start”按钮启动实验,动态波形得到显示,直至周

43、期反应过程结束,实验也自动结束,如设置合理就能够在主界面中间得到反映该非线性环节静态特性的波形。注意,采用不同测试信号看到的波形或曲线是不同的。 ⑤改变环节参数,按”Start”启动实验,动态波形得到显示,直至周期反应过程结束,实验也自动结束,如设置合理就能够在主界面中间得到反映参数改变对该非线性环节静态特性影响的波形。, ⑥按实验报告需要,将图形结果保存为位图文件,操作方法参阅软件使用说明书。 2.利用实验设备,设计并连接饱和型非线性环节的模拟电路,完成该环节的静态特性测试;并改变参数,观测参数对静态特性的影响。 参阅本实验附录2,从图5.2.1和图5.2.2可知,利用实验台上的单元

44、U7即可获得实验所需饱和型非线性环节的模拟电路。单元电路中双向稳压管的稳压值为2.4V,改变U7中的电位器的电阻接入值,即可改变饱和特性参数K与M,K与M随阻值减小而减小。 可利用周期斜坡或正弦信号测试非线性环节的静态特性,具体操作方法请参阅本实验步骤1,这里不再赘述。 3.利用实验设备,设计并连接具有死区特性的非线性环节的模拟电路,完成该环节的静态特性测试;并改变参数,观测参数对静态特性的影响。 参阅本实验附录3,从图5.3.1和图5.3.2可知,利用实验台上的单元U5,将该单元中的拨键S4拨向上方即可获得实验所需具有死区特性的非线性环节的模拟电路。改变U5中的电阻Rf的阻值,即可改变

45、死区特性线性部分斜率K,K随Rf增大而增大。改变U5中的电阻R1(=R2)的阻值,即可改变死区特性死区的宽度Δ,Δ随R1增大而增大。 可利用周期斜坡或正弦信号测试非线性环节的静态特性,具体操作方法请参阅本实验步骤1,这里不再赘述。 4.利用实验设备,设计并连接具有间隙特性的非线性环节的模拟电路,完成该环节的静态特性测试;并改变参数,观测参数对静态特性的影响。 参阅本实验附录4,从图5.4.1和图5.4.2可知,利用实验台上的单元U5,将该单元中的拨键S4拨向下方即可获得实验所需具有间隙特性的非线性环节的模拟电路。改变U5中的电容Cf的阻值,即可改变间隙特性线性部分斜率K,K随Cf增大而减

46、小。改变U5中的电阻R1(=R2)的阻值,即可改变死区特性死区的宽度Δ,Δ随R1增大而增大。 可利用周期斜坡或正弦信号测试非线性环节的静态特性,具体操作方法请参阅本实验步骤1,这里不再赘述。 请注意,单元U5不含运放锁零电路,为避免电容上电荷累积影响实验结果,在每次实验启动前,务必对电容进行短接放电。 5.分析实验结果,完成实验报告。 四.附录 1.具有继电特性的非线性环节 具有继电特性非线性环节的静态特性,即理想继电特性如图5.1.1所示。该环节的模拟电路如图5.1.2所示。 继电特性参数M,由双向稳压管的稳压值与后一级运放放大倍数之积决定。故改

47、变图5.1.2中电位器接入电阻的数值即可改变M。当阻值减小时,M也随之减小。 实验时,能够用周期斜坡或正弦信号作为测试信号进行静态特性观测。注意信号频率的选择应足够低,如1Hz。一般选用周期斜坡信号作为测试信号时,选择在X-Y显示模式下观测;选用正弦信号作为测试信号时,选择在X-t显示模式下观测。 2.具有饱和特性的非线性环节 具有饱和特性非线性环节的静态特性,即理想饱和特性如图5.2.1所示: 该环节的模拟电路如图5.2.2所示: 特性饱和部分的饱和值M等于稳压管的稳压值与后一级放大倍数的积,特性线性部分的斜率K等于两级运放放大倍数之积。故改变图5.2.2中

48、的电位器接入电阻值时将同时改变M和K,它们随阻值增大而增大。 实验时,能够用周期斜坡或正弦信号作为测试信号进行静态特性观测。注意信号频率的选择应足够低,如1Hz。选用周期斜坡信号作为测试信号时,可在X-Y显示模式下观测;选用正弦信号作为测试信号时,可在X-t显示模式下观测。 3.具有死区特性的非线性环节 具有死区特性非线性环节的静态特性,即理想死区特性如图5.3.1所示: 该环节的模拟电路如图5.3.2所示: 斜率K为: 死区,式中R2的单位为,且R2=R1(实际死区还要考虑二极管的压降值)。 实验时,能够用周期斜坡或正弦信号作为测试信号进行静态特性观测。注意信号频率的选择应足

49、够低,如1Hz。选用周期斜坡信号作为测试信号时,可在X-Y显示模式下观测;选用正弦信号作为测试信号时,可在X-t显示模式下观测。 4.具有间隙特性的非线性环节 具有间隙特性非线性环节的静态特性,即理想间隙特性如图5.4.1所示: 该环节的模拟电路如图5.4.2所示: 图中间隙特性的宽度,(实际死区还要考虑二极管的压降值),特性斜率,因此改变R1与R2可改变间隙特性的宽度,改变能够调节特性斜率。实验时,能够用正弦信号作为测试信号进行静态特性观测。 注意信号频率的选择应足够低,如1Hz。选用正弦信号作为测试信号时,可在X-t显示模式下观测。 注意由于元件(二极管、电阻等)参数数值的

50、分散性,造成电路不对称,因而引起电容上电荷累积,影响实验结果,故每次实验启动前,需对电容进行短接放电。 实验六 非线性系统相平面法 一.实验目的 1.学习用相平面法分析非线性系统。 2.熟悉研究非线性系统的电路模拟研究方法。 二.实验内容 1.用相平面法分析继电型非线性系统的阶跃响应和稳态误差。 2.用相平面法分析带速度负反馈的继电型非线性系统的阶跃响应和稳态误差。 3.用相平面法分析饱和型非线性系统的阶跃响应和稳态误差。 三.实验步骤 1.利用实验设备,设计并连接一未加校正的继电型非线性闭环系统的模拟电路,利用阶跃输入作测试信号,观测和记录系

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服