ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:29.84KB ,
资源ID:4541806      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4541806.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(6备课资料(331几何概型).docx)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

6备课资料(331几何概型).docx

1、 几何概型是高中数学新增加的内容,其特点鲜明,题目类型较为固定.高中数学学习阶段所出现的几何概型问题总结如下. 1.与长度有关的几何概型 例1 有一段长为10米的木棍,现要将其截成两段,要求每一段都不小于3米,那么符合要求的截法的概率是多大 分析:由于要求每一段都不小于3米,也就是说只能在距两端都为3米的中间的4米中截,这是一道非常典型的与长度有关的几何概型问题. 解:记两段木棍都不小于3米为事件A,那么P(A)=. 2.与面积有关的几何概型 这里有一道十分有趣的题目: 例2 郭靖、潇湘子与金轮法王等武林高手进行一种比赛,比赛规那么如下:在很远的地方有一顶帐篷,可以看到里面

2、有一张小方几,要将一枚铜板扔到这张方几上.铜板的直径是方几边长的,谁能将铜板整个地落到方几上就可以进行下一轮比赛.郭靖一扔,铜板落到小方几上,且没有掉下,问他能进入下一轮比赛的概率有多大 分析:这是一道几何概型问题,在几何概型中,样本空间是问题所涉及的整个几何图形,在此题中,样本空间就是小方几的桌面面积.一个事件就是整个几何图形的一局部,这个事件发生的概率就是这局部面积与整个图形的面积比. 解:不妨设小方几的边长为1,铜板落到小方几上,也就是铜板的中心落到方几上,而要求整个铜板落到小方几上,也就是要求铜板的中心落到方几中内的一个×的小正方形内〔如上图〕,这时铜板中心到方几边缘的距离≥铜板边

3、长的.整个方几的面积为1×1=1,而中央小正方形的面积为×=,所以郭靖进入下一轮比赛的概率为. 例3 甲、乙两人相约在上午9:00至10:00之间在某地见面,可是两人都只能在那里停留5分钟.问两人能够见面的概率有多大 解:设甲到的时间为〔9+x〕小时,乙到的时间为〔9+y〕小时,那么0≤x≤1,0≤y≤1. 点〔x,y〕形成直角坐标系中的一个边长为1的正方形,以〔0,0〕,〔1,0〕,〔0,1〕,〔1,1〕为顶点〔如右图〕.由于两人都只能停留5分钟即小时,所以在|x-y|≤时,两人才能会面. 由于|x-y|≤是两条平行直线x-y=与y-x=之间的带状区域,正方形在这两个带状区域是两个

4、三角形,其面积之和为(1-)×(1-)=()2. 从而带形区域在这个正方形内的面积为1-()2=,因此所求的概率为. 3.与体积有关的几何概型 例4 在5升水中有一个病毒,现从中随机地取出1升水,含有病毒的概率是多大 分析:病毒在这5升水中的分布可以看作是随机的,取得的1升水可以看作构成事件的区域,5升水可以看作是试验的所有结果构成的区域,因此可能用体积比公式计算其概率. 解:“取出1升水,其中含有病毒〞这一事件记作事件A,那么P(A)==0.2. 从而所求的概率为0.2. 现在我们将这个问题拓展一下: 例5 在5升水中有两个病毒,现从中随机地取出1升水,含有病毒的概率是多

5、大 分析:此题目与上一题有一点区别,即现在在5升水中含有两个病毒,我们不妨将这两个病毒分别记作病毒甲和病毒乙.随机地取1升水,由上题我们可知含有病毒甲的概率为,含有病毒乙的概率也是,而这两种情况都包括了“既有病毒甲又有病毒乙〞的情况,所以应当将这种情况去掉. 解:记“取1升水,含有病毒甲〞为事件A;“取1升水,含有病毒乙〞为事件B,那么“既含有病毒甲又含有病毒乙〞为事件AB. 从而所求的概率为P=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)==0.36. 4.与角度有关的几何概型 例6 在圆心角为90°的扇形中,以圆心为起点作射线OC,求使得∠AOC和∠BOC都不小于30°的概率. 解:设事件A是“作射线OC,求使得∠AOC和∠BOC都不小于30°〞.那么μa=90°-30°-30°=30°,而μΩ=90°,由几何概型的计算公式得P〔A〕=. 注意:在高中数学阶段,我们对于与面积有关的几何概型和与体积有关的几何概型要求重点掌握.这里只是列出了几道与几何概型有关的题目,可以说,在高中数学学习阶段,这四种几何概率模型根本上包括了我们所要学习的几何概型,希望能对大家有一点帮助. 〔设计者:路致芳〕

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服