1、 专题一:集合、常用逻辑用语、不等式、函数与导数第二讲--函数、基本初等函数的图象与性质 专题一:集合、常用逻辑用语、不等式、函数与导数 第二讲 函数、基本初等函数的图象与性质 【最新考纲透析】 1.函数 (1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。 (2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。 (3)了解简单的分段函数,并能简单应用。 (4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。 (5)会运用函数图象理解和研究函数的性质。 2.指数
2、函数 (1)了解指数函数模型的实际背景。 (2)理解有理指数幂的含义,了解褛指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。 (4)知道指数函数是一类重要的函数模型。 3.对数函数 (1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。[来源:学§科§网Z§X§X§K] (2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。 (3)知道对数函数是一类重要的函数模型。 (4)了解指数函数与对数函数互为反函数()。 4.幂函数 (1)
3、了解幂函数的概念 (2)结合函数的图象了解它们的变化情况。 【核心要点突破】 要点考向一:基本初等函数问题 考情聚焦:1.一元二次函数、指数函数、对数函数和幂函数是最重要的基本初等函数,在每年高考中都有涉及到直接考查它们定义、定义域和值域、图象和性质的问题。 2.常与函数的性质、方程、不等式综合命题,多以选择、填空题的形式出现,属容易题。 考向链接:1.一元二次、二次函数及指数\对数函数和幂函数的定义、定义域、值域、图象和性质是解决此类题目的关键,同时要注意数形结合、化归和分类讨论思想的应用。 2.熟记幂和对数的运算性质并能灵活运用。 例1:(2010·全国高考卷Ⅱ文科·T4)
4、函数y=1+ln(x-1)(x>1)的反函数是 (A) y=-1(x>0) (B) )y=+1(x>0) (C) y=-1(x R) (D)y=+1 (x R) 【命题立意】本题考查了反函数的概念及其求法。 【思路点拨】运用求反函数的方法解。 【规范解答】 选D,y=1+ln(x-1),ln(x-1)=y-1,x-1=e,所以反函数为y=+1 (x R) 【方法技巧】求反函数的步骤:(1)反解x,即用y表示x. (2)把x、y互换, (3)写出反函数的定义域,即原函数的值域。本题注意指数式与对数式的互化。 例2:(2010·天津高考
5、文科·T6)设( )
(A)a 6、义域、映射个数、函数值、解析式的确定与应用。
2.常结合方程、不等式及函数的有关性质交汇命题,属低、中档题。
考向链接:1.求函数定义域的类型和相应方法。
2.求f(g(x))类型的函数值时,应遵循先内后外的原则,面对于分段函数的求值问题,必须依据条件准确地找出利用哪一段求解,特别地对具有周期性的函数求值要用好其周期性。
3.求函数的解析式,常见命题规律是:先给出一定的条件确定函数的解析式,再研究函数的有关性质;解答的常用方法有待定系数法、定义法、换元法、解方程组法、消元法等。
4.映射个数的计算一般要分类计数。
例3:(2010·天津高考理科·T8)若函数f(x)=,若f(a)> 7、f(-a),则实数a的取值范围是 ( )
(A)(-1,0)∪(0,1) (B)(-∞,-1)∪(1,+∞)
(C)(-1,0)∪(1,+∞) (D)(-∞,-1)∪(0,1)
【命题立意】考查对数函数的图像和性质。
【思路点拨】对a进行讨论,通过图像分析f(a)>f(-a)对应的实数a的范围。
【规范解答】选C,当a>0,即-a<0时,由f(a)>f(-a)知,在同一个坐标系中画出和函数的图像,由图像可得a>1;当a<0,即-a>0时,同理可得-1 8、
要点考向三:函数图象问题[来源:学科网ZXXK]
考情聚焦:1.函数图象作为高中数学的一个“重头戏”,是研究函数性质、方程、不等式的重要武器,已成为各省市高考命题的一个热点。
2.常以几类初等函数的图象为基础,结合函数的性质综合考查,多以选择、填空题的形式出现。
考向链接:1.基本初等函数的图象和性质,函数图象的画法以及图象的三种变换。
2.在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究。
3.在研究一些陌生的方程和不等式时常用数形结合法求解。
例4:(2010·山东高考理科·T11)函数的图象大致是( )
【命题立意】本题 9、考查函数的图象,函数的基础知识以及数形结合的思维能力,
考查了考生的分析问题解决问题的能力和运算求解能力。
【思路点拨】利用特殊值对图象进行估计分析.
【规范解答】选A,因为当x=2或4时,,所以排除B、C;当x=-2时,2x -=,故排除D,所以选A.
要点考向四:函数性质问题
考情聚焦:该考向是各省市高考命题大做文章的一个重点。常与多个知识点交汇命题,且常考常新,既有小题,也有大题,主要从以下三个方面考查:
1.单调性(区间)问题,热点有:(1)确定函数单调性(区间);(2)应用函数单调性求函数值域(最值)、比较大小、求参数的取值范围、解(或证明)不等式。
2. 10、奇偶性、周期性、对称性的确定与应用。
3.最值(值域)问题,考题常与函数的其他性质、图象、导数、基本不等式等综合。
例5:(2010辽宁文数)(21)(本小题满分12分)
已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设,证明:对任意,.
解:(Ⅰ) f(x)的定义域为(0,+),.
当a≥0时,>0,故f(x)在(0,+)单调增加;
当a≤-1时,<0, 故f(x)在(0,+)单调减少;
当-1<a<0时,令=0,解得x=.当x∈(0, )时, >0;
x∈(,+)时,<0, 故f(x)在(0, )单调增加,在(,+)单调减少.
(Ⅱ)不妨假设x1≥x2.由于a≤-2, 11、故f(x)在(0,+)单调减少.
所以等价于
≥4x1-4x2,
即f(x2)+ 4x2≥f(x1)+ 4x1.
令g(x)=f(x)+4x,则
+4
=.
于是≤=≤0.
从而g(x)在(0,+)单调减少,故g(x1) ≤g(x2),
即 f(x1)+ 4x1≤f(x2)+ 4x2,故对任意x1,x2∈(0,+) ,.
【高考真题探究】
1. (2010·上海高考理科·T8)对任意不等于1的正数a,函数f(x)=的反函数的图像都经过点P,则点P的坐标是
【命题立意】本题考查对数函数的性质及反函数的有关性质.
【思路点拨】根据对数函数的性 12、质找到原函数过的定点,再由反函数的性质找到关于直线y=x的对称点.
【规范解答】.因为函数的图像过定点,由反函数的性质可知,反函数的图像过定点.
2. (2010·全国Ⅰ理科·T8)设, ,,则( )
A a






