ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:207.27KB ,
资源ID:4497427      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4497427.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(一次函数、点的坐标专题复习.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一次函数、点的坐标专题复习.docx

1、 一次函数、点的坐标专题复习 第四章一次函数复习 知识点1、点的坐标 方法: x轴上的点纵坐标为0,y轴上的点横坐标为0; 若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A(m,n)在第二象限,则点(|m|,-n)在第____象限; 2、 若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为______________________; 3、 已知A(4,b),B(a,-2),若A,B关于x轴对

2、称,则a=_______,b=_________;若A,B关于y轴对称,则a=_______,b=__________;若若A,B关于原点对称,则a=_______,b=_________; 4、 若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第______象限。 知识点2、关于点的距离的问题 方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示; 若AB∥x轴,则的距离为; 若AB∥y轴,则的距离为; 点B(2,-2)到x轴的距离是_________;到y轴的距离是____________; 1、

3、点C(0,-5)到x轴的距离是_________;到y轴的距离是____________; 2、 点D(a,b)到x轴的距离是_________;到y轴的距离是____________; 知识点3 、一次函数和正比例函数的概念 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.例如:y=2x+3,y=-x+2,y=x等都是一次函数,y=x,y=-x都是正比例函数. 1 、下列函数中,哪些是一次函数?哪些是正比例函数? (1)y=-x; (2)y=-; (3)y=-3-5

4、x; (4)y=-5x2; (5)y=6x- (6)y=x(x-4)-x2. 2 、 当m为何值时,函数y=-(m-2)x+(m-4)是一次函数? 3、若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为( ) (A)m>- (B)m>5 (C)m=- (D)m=5 4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 知识点4 、点P(x0,y0)与直线y=kx+b的图象的关系 (1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=

5、kx+b; (2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上. 例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上. 1.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______. 2.下面哪个点在函数y=x+1的图象上( ) A.(2,1) B.(-2,1) C.(2,0) D.(-

6、2,0) 知识点5、 函数的图象 把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线. 1、在同一坐标系内作出下列函数的图象 (1) y=2x-3 (2) y=-3x (一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0).但也不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.) 方法:☆一次函数y=kx+b(k≠0)中k、b的意义: k:表示直线y=kx+

7、b(k≠0) 的倾斜程度; b表示直线y=kx+b(k≠0)与y轴交点的 . 由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的. ☆同一平面内,不重合的两直线 y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当

8、 时,两直线交于y轴上同一点。 ☆特殊直线方程: X轴 : 直线 , Y轴 : 直线 。 与X轴平行的直线 , 与Y轴平行的直线 。 一三象限角平分线 , 二、四象限的角平分线 。

9、函数 图象 性质 经过象限 变化规律 y=kx+b (k、b为常数, 且k≠0)   k>0 b>0       b=0     b<0     k<0 b>0       b=0     b<0     知识点6、 确定正比例函数及一次函数表达式的条件 (1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值. (2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独

10、立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值. (3) 待定系数法 先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数. (4) 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b; (2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k与b的值,得到函数表达式. 1、已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 好好想一

11、想2题是道脑力急转题 2:若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,则一次函数的解析式为________. 3、若函数y=3x+b经过点(2,-6),求函数的解析式。 4、直线y=kx+b的图像经过A(3,4)和点B(2,7), 5、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。 6、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。 知识点7、图形解读与判断. 1、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱

12、内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的( ) 2.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( ) 知识点8:求面积问题 方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解; 复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形); 往往选择坐标轴上的线段作为底,

13、底所对的顶点的坐标确定高; 1.直线y=-2x+4与两坐标轴围成的三角形的面积是( ) (A)4 (B)6 (C)8 (D)16 2.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( ) (A)4条 (B)3条 (C)2条 (D)1条 3.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( ) (A)1个 (B)2个 (C)3个 (D)4个 4、直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。 5

14、.如下第1图:已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式 6、如上第2图已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB (1)求两个函数的解析式;(2)求△AOB的面积; 知识点9:一次函数综合应用 1、画出函数的图象,利用图象:(1)求方程的解;(2)求不等式>0的解;(3)若,求的取值范围。 2、网络时代的到来,很多家庭都接入了网络,电信

15、局规定了拨号入网的两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网)。此外B种上网方式要加收通信费0.02元/分. (1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式。 (2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱? 3、一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零 钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少? (2)

16、降价前他每千克土豆出售的价格是多少? (3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆? 4、如下1图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元) 与通话时间t(分钟)之间的函数关系的图象(1)写出y与t之间的函数关系式. (2)通话2分钟应付通话费多少元?通话7分钟呢? 4、如上2图,直线与x轴y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0)。 (1)求的值; (2)若点P(,)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围; (3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由。 7

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服