ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:2.48MB ,
资源ID:4492247      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4492247.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2019_2020学年新教材高中数学第三章函数3.1.3函数的奇偶性第2课时函数奇偶性的应用习题课应用案巩固提升新人教B版必修第一册.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2019_2020学年新教材高中数学第三章函数3.1.3函数的奇偶性第2课时函数奇偶性的应用习题课应用案巩固提升新人教B版必修第一册.doc

1、第2课时 函数奇偶性的应用(习题课)A基础达标1若f(x)ax2bxc(a0)是偶函数,则g(x)ax3bx2cx是()A奇函数B偶函数C非奇非偶函数D既是奇函数又是偶函数解析:选A.因为f(x)ax2bxc是偶函数,所以由f(x)f(x),得b0.所以g(x)ax3cx.所以g(x)a(x)3c(x)g(x),所以g(x)为奇函数2若函数f(x)(m1)x2(m21)x1是偶函数,则在区间(,0上,f(x)()A可能是增函数,也可能是常函数B是增函数C是常函数D是减函数解析:选A.因为f(x)是偶函数,所以m1;当m1时,f(x)1是常函数;当m1时,f(x)2x21在(,0上是增函数3(2

2、019焦作检测)设f(x)为偶函数,且在区间(,0)上是增函数,f(2)0,则xf(x)0的解集为()A(1,0)(2,)B(,2)(0,2)C(2,0)(2,) D(2,0)(0,2)解析:选C.根据题意,偶函数f(x)在(,0)上为增函数,又f(2)0,则函数f(x)在(0,)上为减函数,且f(2)f(2)0,函数f(x)的草图如图,又由xf(x)0或,由图可得2x0或x2,即不等式的解集为(2,0)(2,)故选C.4.(2019宁波检测)已知f(x)x5ax3bx8(a,b是常数),且f(3)5,则f(3)()A21B21C26 D26解析:选B.设g(x)x5ax3bx,则g(x)为奇

3、函数由题设可得f(3)g(3)85,得g(3)13.又g(x)为奇函数,所以g(3)g(3)13,于是f(3)g(3)813821.5(2019青岛二中检测)设f(x)是R上的偶函数,且在(0,)上是减函数,若x10,则()Af(x1)f(x2)Bf(x1)f(x2)Cf(x1)x10,f(x)在(0,)上是减函数,所以f(x2)f(x1)又f(x)是R上的偶函数,所以f(x2)f(x2),所以f(x2)f(x1)6已知yf(x)是奇函数,当x0时,f(x)x2ax,且f(3)6,则a的值为_解析:因为f(x)是奇函数,所以f(3)f(3)6,所以(3)2a(3)6,解得a5.答案:57已知偶

4、函数f(x)在0,)上单调递减,f(2)0,若f(x1)0,则x的取值范围是_解析:根据偶函数的性质,易知f(x)0的解集为(2,2),若f(x1)0,则2x12,解得1x3.答案:(1,3)8若函数f(x)(xa)(bx2a)(常数a,bR)是偶函数,且它的值域为(,4,则该函数的解析式f(x)_解析:f(x)(xa)(bx2a)bx2(2aab)x2a2是偶函数,因为图像关于y轴对称,且它的值域为(,4,所以2aab0,所以b2或a0(舍去),所以f(x)2x22a2,又因为值域为(,4,所以2a24,所以f(x)2x24.答案:2x249已知函数f(x)1.(1)若g(x)f(x)a为奇

5、函数,求a的值;(2)试判断f(x)在(0,)内的单调性,并用定义证明解:(1)由已知g(x)f(x)a,得g(x)1a,因为g(x)是奇函数,所以g(x)g(x),即1a,解得a1.(2)函数f(x)在(0,)内为增函数证明如下:设0x1x2,则f(x1)f(x2)1.因为0x1x2,所以x1x20,从而0,即f(x1)2时,yf(x)的图像是顶点为P(3,4)且过点A(2,2)的抛物线的一部分(1)求函数f(x)在(,2)上的解析式;(2)在图中的直角坐标系中画出函数f(x)的图像;(3)写出函数f(x)的值域和单调区间解:(1)当x2时,设f(x)a(x3)24.因为f(x)的图像过点A

6、(2,2),所以a(23)242,所以a2,所以f(x)2(x3)24.设x(,2),则x2,所以f(x)2(x3)24.又因为f(x)在R上为偶函数,所以f(x)f(x),所以f(x)2(x3)24,即f(x)2(x3)24,x(,2)(2)函数图像如图所示(3)由图像观察知f(x)的值域为y|y4单调递增区间为(,3和0,3;单调递减区间为3,0和3,)B能力提升11若f(x)是偶函数,其定义域为(,),且在0,)上是减函数,则f与f的大小关系是()AffBffCffDff解析:选C.因为a22a(a1)2,又因为f(x)在0,)上是减函数,所以fff.12若f(x)和g(x)都是奇函数,

7、且F(x)f(x)g(x)2在(0,)上有最大值8,则在(,0)上F(x)有()A最小值8 B最大值8C最小值6 D最小值4解析:选D.根据题意有f(x)g(x)在(0,)上有最大值6,又因为f(x)和g(x)都是奇函数,所以f(x)g(x)是奇函数且f(x)g(x)在(,0)上有最小值6,则F(x)在(,0)上有最小值624,故选D.13设函数f(x)是R上的奇函数,当x0时,f(x)x24x.(1)求f(x)的表达式;(2)证明f(x)在区间(0,)上是增函数解:(1)当x0,所以f(x)(x)24(x)x24x.因为f(x)是奇函数,所以f(x)f(x),所以f(x)f(x)(x24x)

8、x24x(x0),所以f(x)(2)证明:设任意的x1,x2(0,),且x1x2,则f(x2)f(x1)(x4x2)(x4x1)(x2x1)(x2x14)因为0x10,x2x140,所以f(x2)f(x1)0,所以f(x1)f(x2),所以f(x)是(0,)上的增函数14已知函数f(x)是定义在(1,1)上的奇函数,且f.(1)确定函数f(x)的解析式;(2)用定义证明f(x)在(1,1)上是增函数;(3)解不等式:f(t1)f(t)0.解:(1)由题意,得所以故f(x).(2)任取1x1x21,则f(x1)f(x2).因为1x1x21,所以x1x20,1x0,1x0.又1x1x21,所以1x

9、1x20.所以f(x1)f(x2)0,所以f(x)在(1,1)上是增函数(3)f(t1)f(t)f(t)因为f(x)在(1,1)上是增函数,所以1t1t1,解得0t.所以不等式的解集为.C拓展探究15已知函数f(x)ax2bx1(a,b均为实数),xR,F(x)(1)若f(1)0,且函数f(x)的值域为0,),求F(x)的解析式;(2)在(1)的条件下,当x2,2时,g(x)f(x)kx是单调函数,求实数k的取值范围;(3)设mn0,mn0,a0,且f(x)为偶函数,判断F(m)F(n)是否大于零,并说明理由解:(1)因为f(1)0,所以ab10.又函数f(x)的值域为0,),所以a0.由ya,知0,即4ab20.解,得a1,b2.所以f(x)x22x1(x1)2.所以F(x)(2)由(1)得g(x)f(x)kxx22x1kxx2(2k)x11.因为当x2,2时,g(x)f(x)kx是单调函数,所以2或2,即k2或k6,故实数k的取值范围为(,26,)(3)大于零理由如下:因为f(x)为偶函数,所以f(x)ax21,所以F(x)不妨设mn,则n0.由mn0,得mn0,所以|m|n|,又a0,所以F(m)F(n)f(m)f(n)(am21)(an21)a(m2n2)0,所以F(m)F(n)大于零- 7 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服