ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:2.44MB ,
资源ID:4491925      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4491925.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2019_2020学年新教材高中数学第4章指数函数与对数函数4.5函数的应用二4.5.3函数模型的应用第2课时建立函数模型解决实际问题课后课时精练新人教A版必修第一册.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2019_2020学年新教材高中数学第4章指数函数与对数函数4.5函数的应用二4.5.3函数模型的应用第2课时建立函数模型解决实际问题课后课时精练新人教A版必修第一册.doc

1、第2课时 建立函数模型解决实际问题 A级:“四基”巩固训练 一、选择题 1.某企业2016年12月份的产值是2016年1月份产值的P倍,若2016年每月产值的平均增长率均相同,则该企业2016年每月产值的平均增长率为(  ) A. B.-1 C. D. 答案 B 解析 设2016年1月份产值为a,每月产值的平均增长率为x,则aP=a(1+x)11,∴x=-1. 2.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y=其中x代表拟录用人数,y代表面试人数,若面试人数为60,则该公司拟录用人数为(  ) A.15 B.40 C.25 D.130 答案 C 解

2、析 若4x=60,则x=15>10,不符合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=40<100,不符合题意.故拟录用25人. 3.下列函数关系中,可以看作是指数型函数y=kax(k∈R,a>0且a≠1)的模型的是(  ) A.竖直向上发射的信号弹,从发射开始到信号弹到达最高点,信号弹的高度与时间的关系(不计空气阻力) B.我国人口年自然增长率为1%时,我国人口总数与年份的关系 C.如果某人t s内骑车行进了1 km,那么此人骑车的平均速度v与时间t的函数关系 D.信件的邮资与其重量间的函数关系 答案 B 解析 A中的函数模型是二次函数;B中的函数模

3、型是指数型函数;C中的函数模型是反比例函数;D中的函数模型是一次函数.故选B. 4.某天0时,小鹏同学生病了,体温上升,吃过药后感觉好多了,中午时他的体温基本正常(正常体温为37 ℃),但是下午他的体温又开始上升,直到半夜才感觉身上不那么发烫了.下面能大致反映出小鹏这一天(0时至24时)体温变化情况的图象是(  ) 答案 C 解析 观察图象A,体温逐渐降低,不符合题意;图象B不能反映“下午他的体温又开始上升”;图象D不能体现“下午他的体温又开始上升”与“直到半夜才感觉身上不那么发烫了”.综上所述,只有图象C是正确的. 5.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足

4、函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是(  ) A.16小时 B.20小时 C.24小时 D.21小时 答案 C 解析 由题意,知解得当x=33时,y=e33k+b=(e11k)3·eb=3×192=24(小时). 二、填空题 6.某公司在甲、乙两地销售同一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为________万元. 答案 4

5、5.6 解析 设甲地销售x辆,则乙地销售(15-x)辆,所以总利润为S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30=-0.15(x-10.2)2+45.606(x∈N*). 所以当x=10时,总利润取得最大值,Smax=45.6(万元). 7.某种型号的汽车紧急刹车后滑行的距离y(km)与刹车时的速度x(km/h)的关系可以用y=ax2来描述,已知这种型号的汽车在速度为60 km/h时,紧急刹车后滑行的距离为b km.若一辆这种型号的汽车紧急刹车后滑行的距离为3b km,则这辆车的行驶速度为________km/h. 答案 60 解析 由题意得a×60

6、2=b,解得a=,所以y=x2.因为y=3b,所以x2=3b,解得x=-60(舍去)或x=60,所以这辆车的行驶速度是60 km/h. 8.衣柜里的樟脑丸随着时间会挥发而体积变小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为V=ae-kt,新丸经过50天后,体积变为A.若一个新丸体积变为a,则需经过________天. 答案 75 解析 由题意,得a=ae-50k,解得e-25k=.令ae-kt=a,即e-kt=3=(e-25k)3=e-75k,即需经过的天数为75. 三、解答题 9.某地区为响应上级号召,在2017年初,新建了一批有200万平方米的廉价住房,供困难的城市

7、居民居住.由于下半年受物价的影响,根据本地区的实际情况,估计今后廉价住房的年平均增长率只能达到5%. (1)经过x年后,该地区的廉价住房为y万平方米,求y=f(x)的表达式,并求此函数的定义域; (2)作出函数y=f(x)的图象,并结合图象,求经过多少年后,该地区的廉价住房能达到300万平方米? 解 (1)经过1年后,廉价住房面积为 200+200×5%=200(1+5%); 经过2年后为200(1+5%)2; … 经过x年后,廉价住房面积为200(1+5%)x, ∴y=200(1+5%)x(x∈N*). (2)作函数y=f(x)=200(1+5%)x(x≥0)的图象,如图所

8、示. 作直线y=300,与函数y=200(1+5%)x的图象交于A点,则A(x0,300),A点的横坐标x0的值就是函数值y=300时所经过的时间x的值. 因为8

9、=P0e-kt(P0,k均为非零常数,e为自然对数的底数),其中P0为t=0时的污染物数量.若经过5 h过滤后还剩余90%的污染物. (1)求常数k的值; (2)试计算污染物减少到40%至少需要多长时间.(精确到1 h,参考数据:ln 0.2≈-1.61,ln 0.3≈-1.20,ln 0.4≈-0.92,ln 0.5≈-0.69,ln 0.9≈-0.11) 解 (1)由已知得,当t=0时,P=P0; 当t=5时,P=90%P0. 于是有90%P0=P0e-5k,解得k=-ln 0.9(或k≈0.022). 解得t=≈=≈42. 故污染物减少到40%至少需要42 h. B级

10、四能”提升训练 1.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知该年9月份两食堂的营业额又相等,则该年5月份(  ) A.甲食堂的营业额较高 B.乙食堂的营业额较高 C.甲、乙两食堂的营业额相等 D.不能确定甲、乙哪个食堂的营业额较高 答案 A 解析 设甲、乙两食堂1月份的营业额均为m,甲食堂的营业额每月增加a(a>0),乙食堂的营业额每月增加的百分率为x.由题意,可得m+8a=m(1+x)8,则5月份甲食堂的营业额y1=m+4a,乙食堂的营业额y2=m(1+x)4=,因为y-y=

11、m+4a)2- m(m+8a)=16a2>0,所以y1>y2,故该年5月份甲食堂的营业额较高. 2.某投资公司拟投资开发某种新产品,市场评估能获得10万元~1000万元(包含10万元和1000万元)的投资收益.现公司准备制订一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不低于1万元,同时不超过投资收益的20%. (1)设奖励方案的函数模型为f(x),根据题目要求,写出f(x)满足的条件; (2)下面是公司预设的两个奖励方案的函数模型: ①f(x)=+2;②f(x)=4lg x-2. 试分别分析这两个函数模型是否符合公司的要求.

12、解 (1)由题意,知公司对奖励方案的基本要求是: 当x∈[10,1000]时,①f(x)是增函数;②f(x)≥1恒成立;③f(x)≤恒成立. (2)①对于函数模型f(x)=+2: 当x∈[10,1000]时,f(x)是增函数, 且f(x)≥f(10)=≥1,即f(x)≥1恒成立, 而若使函数f(x)=+2≤在[10,1000]上恒成立, 则29x≥300在[10,1000]上恒成立. 又当x=10时,29x=29×10=290<300, 所以f(x)≤在[10,1000]上不恒成立. 故该函数模型不符合公司的要求. ②对于函数模型f(x)=4lg x-2: 当x∈[10,1000]时,f(x)是增函数, 且f(x)≥f(10)=4lg 10-2=2≥1, 所以f(x)≥1在[10,1000]上恒成立. 在同一平面直角坐标系中画出函数f(x)=4lg x-2和y=的图象,如图所示. 由图象可知当x∈[10,1000]时,4lg x-2≤恒成立. 故该函数模型符合公司的要求. - 7 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服